Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (4): 922-931.doi: 10.23919/JSEE.2024.000048
• SYSTEMS ENGINEERING • Previous Articles
Ai GAO1,2,3,*(), Shengnan XU1,2,3(), Zichen ZHAO1,2,3(), Haibin SHANG1,2,3(), Rui XU1,2,3()
Received:
2022-01-05
Online:
2024-08-18
Published:
2024-08-06
Contact:
Ai GAO
E-mail:gaoai@bit.edu.cn;1059860965@qq.com;BitZhaozc@foxmail.com;shanghb@bit.edu.cn;xurui@bit.edu.cn
About author:
Supported by:
Ai GAO, Shengnan XU, Zichen ZHAO, Haibin SHANG, Rui XU. Fault diagnosis method of link control system for gravitational wave detection[J]. Journal of Systems Engineering and Electronics, 2024, 35(4): 922-931.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Identification and comparison of specific fault parameters s"
Failure diagnosis method | Computing time | Error | |
Optimization algorithm | Sequential quadratic programming algorithm | ||
Particle swarm optimization | |||
Genetic algorithm | |||
Machine learning | Deep learning | ||
Support vector machine |
Table 4
Identification results of specific fault parameters for different faults"
Fault area | Number of hidden layers | Number of neurons in hidden layers | Accuracy |
y1 | 4 | [20,15,15,15] | |
[20,15,15,20] | |||
[20,15,20,20] | |||
5 | [20,15,15,15,20] | ||
[20,15,15,20,20] | |||
[20,15,20,20,20] | |||
6 | [20,15,15,15,15,20] | ||
[20,15,15,15,20,20] | |||
[20,15,15,20,20,20] | |||
y2 | 4 | [20,15,15,15] | |
[20,15,15,20] | |||
[20,15,20,20] | |||
5 | [20,15,15,15,20] | ||
[20,15,15,20,20] | |||
[20,15,20,20,20] | |||
6 | [20,15,15,15,15,20] | ||
[20,15,15,15,20,20] | |||
[20,15,15,20,20,20] | |||
y3 | 4 | [20,15,15,15] | |
[20,15,15,20] | |||
[20,15,20,20] | |||
y3 | 5 | [20,15,15,15,20] | |
[20,15,15,20,20] | |||
[20,15,20,20,20] | |||
6 | [20,15,15,15,15,20] | ||
[20,15,15,15,20,20] | |||
[20,15,15,20,20,20] | |||
y4 | 4 | [20,15,15,15] | |
[20,15,15,20] | |||
[20,15,20,20] | |||
5 | [20,15,15,15,20] | ||
[20,15,15,20,20] | |||
[20,15,20,20,20] | |||
6 | [20,15,15,15,15,20] | ||
[20,15,15,15,20,20] | |||
[20,15,15,20,20,20] | |||
y5 | 4 | [20,15,15,15] | |
[20,15,15,20] | |||
[20,15,20,20] | |||
5 | [20,15,15,15,20] | ||
[20,15,15,20,20] | |||
[20,15,20,20,20] | |||
6 | [20,15,15,15,15,20] | ||
[20,15,15,15,20,20] | |||
[20,15,15,20,20,20] | |||
y6 | 4 | [20,15,15,15] | |
[20,15,15,20] | |||
[20,15,20,20] | |||
5 | [20,15,15,15,20] | ||
[20,15,15,20,20] | |||
[20,15,20,20,20] | |||
6 | [20,15,15,15,15,20] | ||
[20,15,15,15,20,20] | |||
[20,15,15,20,20,20] | |||
y7 | 4 | [20,15,15,15] | |
[20,15,15,20] | |||
[20,15,20,20] | |||
5 | [20,15,15,15,20] | ||
[20,15,15,20,20] | |||
[20,15,20,20,20] | |||
6 | [20,15,15,15,15,20] | ||
[20,15,15,15,20,20] | |||
[20,15,15,20,20,20] |
1 |
BAILES M, BERGER B K, BRADY P R, et al Gravitational-wave physics and astronomy in the 2020s and 2030s. Nature Reviews Physics, 2021, 3 (5): 344- 366.
doi: 10.1038/s42254-021-00303-8 |
2 |
ARUN K G, BELGACEM E, BENKEL R, et al New horizons for fundamental physics with LISA. Living Reviews in Relativity, 2022, 25 (1): 1- 148.
doi: 10.1007/s41114-021-00034-3 |
3 | BOILEAU G, JENKINS A C, SAKELLARIADOU M, et al Ability of LISA to detect a gravitational-wave background of cosmological origin: the cosmic string case. Physical Review D, 2022, 105 (2): 023510. |
4 |
GONG Y G, LUO J, WANG B Concepts and status of Chinese space gravitational wave detection projects. Nature Astronomy, 2021, 5 (9): 881- 889.
doi: 10.1038/s41550-021-01480-3 |
5 |
AMARO S P, ARCA S M, BABAK S, et al The effect of mission duration on LISA science objectives. General Relativity and Gravitation, 2022, 54 (1): 1- 47.
doi: 10.1007/s10714-021-02888-y |
6 |
BAGHI Q, KORSAKOVA N, SLUTSKY J, et al Detection and characterization of instrumental transients in LISA Pathfinder and their projection to LISA. Physical Review D, 2022, 105 (4): 042002.
doi: 10.1103/PhysRevD.105.042002 |
7 |
LUO Z, GUO Z K, JIN G, et al A brief analysis to Taiji: science and technology. Results in Physics, 2020, 16, 102918.
doi: 10.1016/j.rinp.2019.102918 |
8 |
LUO Z R, WANG Y, WU Y L, et al The Taiji program: a concise overview. Progress of Theoretical and Experimental Physics, 2021, 2021 (5): 05A108.
doi: 10.1093/ptep/ptaa083 |
9 |
MEI J, BAI Y Z, BAO J, et al The TianQin project: current progress on science and technology. Progress of Theoretical and Experimental Physics, 2021, 2021 (5): 05A107.
doi: 10.1093/ptep/ptaa114 |
10 |
LIANG Z C, HU Y M, JIANG Y, et al Science with the TianQin observatory: preliminary results on stochastic gravitational-wave background. Physical Review D, 2022, 105 (2): 022001.
doi: 10.1103/PhysRevD.105.022001 |
11 |
SHADDOCK D A Space-based gravitational wave detection with LISA. Classical and Quantum Gravity, 2008, 25 (11): 114012.
doi: 10.1088/0264-9381/25/11/114012 |
12 |
KAWAMURA S, ANDO M, SETO N, et al Current status of space gravitational wave antenna DECIGO and B-DECIGO. Progress of Theoretical and Experimental Physics, 2021, 2021 (5): 05A105.
doi: 10.1093/ptep/ptab019 |
13 | XIE X, JIANG F H, LI J F Design and optimization of stable initial heliocentric formation on the example of LISA. Advances in Space Research, 2023, 71 (1): 420- 438. |
14 |
ZHANG J Y, MING M, JIANG Y Z, et al Inter-satellite laser link acquisition with dual-way scanning for space advanced gravity measurements mission. Review of Scientific Instruments, 2018, 89 (6): 064501.
doi: 10.1063/1.5019433 |
15 | KAYMAK Y, ROJAS-CESSA R, FENG J, et al A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications. IEEE Communications Surveys & Tutorials, 2018, 20 (2): 1104- 1123. |
16 | BISWAS A, SRINIVASAN M, PIAZZOLLA S, et al. Deep space optical communications. Proc. of the Society of Photo-Optical Instrumentation Engineers Laser and Applications Symposium, 2018. https://doi.org/10.1117/12.2296426. |
17 | NOVARA C, VIDANO D S, ZOCCO A. Drag free control design for a space-based gravitational wave observatory. Turin: Polytechnic University of Turin, 2020. |
18 | HU T, SHEN L Q, FU J, et al Robust control and mechanical-electrical-hydraulic joint simulation of spacecraft servo mechanism. Systems Engineering and Electronics, 2023, 45 (10): 3218- 3225. |
19 | LIU X C, CHEN D H, XU G, et al Control and strategy for satellites formation maintenance with impulsive maneuver. Systems Engineering and Electronics, 2023, 45 (8): 2533- 2545. |
20 |
VIDANO S, NOVARA C, COLANGELO L, et al The LISA DFACS: a nonlinear model for the spacecraft dynamics. Aerospace Science and Technology, 2020, 107, 106313.
doi: 10.1016/j.ast.2020.106313 |
21 | NOCEDAL J, WRIGHT S J. Sequential quadratic programming. NO CEDAL J, WRIGHI S J, ed. Numerical Optimization. Berlin: Springer, 2006: 529−562. |
22 | SONG X C, WANG J T, WANG J, et al Sequential quadratic programming-based non-cooperative target distributed hybrid processing optimization method. Journal of Systems Engineering and Electronics, 2023, 34 (1): 129- 140. |
23 |
FEI S W, ZHANG X B Fault diagnosis of power transformer based on support vector machine with genetic algorithm. Expert Systems with Applications, 2009, 36 (8): 11352- 11357.
doi: 10.1016/j.eswa.2009.03.022 |
24 | WANG L, LIU Z Q Fault diagnosis of analog circuit for WPA-IGA-BP neural network. Systems Engineering and Electronics, 2021, 43 (4): 1133- 1143. |
25 |
TOMA R N, PROSVIRIN A E, KIM J M Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning classifiers. Sensors, 2020, 20 (7): 1884.
doi: 10.3390/s20071884 |
26 |
CHEN H, FAN D L, FANG L, et al Particle swarm optimization algorithm with mutation operator for particle filter noise reduction in mechanical fault diagnosis. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34 (10): 2058012.
doi: 10.1142/S0218001420580124 |
27 |
DING J K, XIAO D M, LI X J Gear fault diagnosis based on genetic mutation particle swarm optimization VMD and probabilistic neural network algorithm. IEEE Access, 2020, 8, 18456- 18474.
doi: 10.1109/ACCESS.2020.2968382 |
28 | CICCU M. Development, implementation and test of different acquisition strategies for LISA. Posal: University of Pisa, 2007. |
29 | DI L T. Controller design for the acquisition phase of the LISA mission using a Kalman filter. Pisa: University of Pisa, 2007. |
30 | GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning. Massachusetts: MIT Press, 2016. |
31 | NIRANJANI V, SELVAM N S. Overview on deep neural networks: architecture, application and rising analysis trends. HALDORAI A, RAMU A, KHAN S, ed. Business intelligence for enterprise Internet of Things. Cham: Springer, 2020: 271−278. |
[1] | Xinwei OU, Zhangxin CHEN, Ce ZHU, Yipeng LIU. Low rank optimization for efficient deep learning: making a balance between compact architecture and fast training [J]. Journal of Systems Engineering and Electronics, 2024, 35(3): 509-531. |
[2] | Rong FAN, Chengke SI, Yi HAN, Qun WAN. RFFsNet-SEI: a multidimensional balanced-RFFs deep neural network framework for specific emitter identification [J]. Journal of Systems Engineering and Electronics, 2024, 35(3): 558-574. |
[3] | Dada ZHAO, Kai DING, Xiaogang QI, Yu CHEN, Hailin FENG. Sound event localization and detection based on deep learning [J]. Journal of Systems Engineering and Electronics, 2024, 35(2): 294-301. |
[4] | Xiaolong XU, Shuai JIANG, Jinbo ZHAO, Xinheng WANG. DCEL: classifier fusion model for Android malware detection [J]. Journal of Systems Engineering and Electronics, 2024, 35(1): 163-177. |
[5] | Xue LEI, Ningyun LU, Chuang CHEN, Tianzhen HU, Bin JIANG. Attention mechanism based multi-scale feature extraction of bearing fault diagnosis [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1359-1367. |
[6] | Delanyo Kwame Bensah KULEVOME, Hong WANG, Xuegang WANG. Rolling bearing fault diagnostics based on improved data augmentation and ConvNet [J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 1074-1084. |
[7] | Zhengyu YE, Bin JIANG, Yuehua CHENG, Ziquan YU, Yang YANG. Distributed fault diagnosis observer for multi-agent system against actuator and sensor faults [J]. Journal of Systems Engineering and Electronics, 2023, 34(3): 766-774. |
[8] | Yuyuan ZHANG, Wenjun YAN, Limin ZHANG, Qing LING. FOLMS-AMDCNet: an automatic recognition scheme for multiple-antenna OFDM systems [J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 307-323. |
[9] | Siting LYU, Xiaohui LI, Tao FAN, Jiawen LIU, Mingli SHI. Deep learning for fast channel estimation in millimeter-wave MIMO systems [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1088-1095. |
[10] | Haifen YANG, Hao ZHANG, Houjun WANG, Zhengyang GUO. A novel approach for unlabeled samples in radiation source identification [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 354-359. |
[11] | Yuwei CUI, Aijun LI, Xianfeng MENG. A fault-tolerant control method for distributed flight control system facing wing damage [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1041-1052. |
[12] | Tao YE, Zongyang ZHAO, Jun ZHANG, Xinghua CHAI, Fuqiang ZHOU. Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 841-853. |
[13] | Zhao SUN, Chao MA, Liang WANG, Ran MENG, Shanshan PEI. A deep learning-based binocular perception system [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 7-20. |
[14] | Hongyin SHI, Yue LIU, Jianwen GUO, Mingxin LIU. ISAR autofocus imaging algorithm for maneuvering targets based on deep learning and keystone transform [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1178-1185. |
[15] | Chuan LIN, Qing CHANG, Xianxu LI. Uplink NOMA signal transmission with convolutional neural networks approach [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 890-898. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||