Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (4): 903-913.doi: 10.23919/JSEE.2024.000056
• ELECTRONICS TECHNOLOGY • Previous Articles
Meng SUN(), Qingfeng JING(
), Weizhi ZHONG(
)
Received:
2023-02-14
Online:
2025-08-18
Published:
2025-09-04
Contact:
Qingfeng JING
E-mail:1352269658@qq.com;jing_nuaa@163.com;zhongwz@nuaa.edu.cn
About author:
Supported by:
Meng SUN, Qingfeng JING, Weizhi ZHONG. Deep residual systolic network for massive MIMO channel estimation by joint training strategies of mixed-SNR and mixed-scenarios[J]. Journal of Systems Engineering and Electronics, 2025, 36(4): 903-913.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Basic parameters of UMi channel scenario"
Scenario parameter | Statistical compoment | UMi-street Canyon | ||
LoS | NLoS | O2I | ||
DS | 0.24log10 (1+ | −0.24log10 (1+ | −6.62 | |
0.38 | 0.16log10 (1+ | 0.32 | ||
ASD | −0.05log10 (1+ | −0.05log10 (1+ | 1.25 | |
0.41 | −0.05log10 (1+ | 0.42 | ||
ASA | −0.08log10 (1+ | −0.05log10 (1+ | 1.76 | |
0.014log10 (1+ | −0.05log10 (1+ | 0.16 | ||
ZSA | −0.1log10 (1+ | −0.05log10 (1+ | 1.01 | |
−0.04log10 (1+ | −0.05log10 (1+ | 0.43 | ||
SF/dB | 4 | 6 | 7 | |
K/dB | 9 | − | − | |
5 | − | − |
Table 2
Basic parameters of UMa channel scenario"
Scenario parameter | Statistical component | UMa | ||
LoS | NLoS | O2I | ||
DS | −6.955-0.0963log10 ( | −6.28-0.204log10 ( | −6.62 | |
0.66 | 0.39 | 0.32 | ||
ASD | 1.06-0.1114log10 ( | 1.5-0.1144log10 ( | 1.25 | |
0.28 | 0.28 | 0.42 | ||
ASA | 1.81 | 2.08-0.27log10 ( | 1.76 | |
0.20 | 0.11 | 0.16 | ||
ZSA | 0.95 | −0.3236log10 (1+ | 1.01 | |
0.16 | 0.16 | 0.43 | ||
SF/dB | 4 | 6 | 7 | |
K/dB | 9 | − | − | |
5 | − | − |
1 |
ALKHATEEB A, EL AYACH O, LEUS G, et al Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 2014, 8 (5): 831- 846.
doi: 10.1109/JSTSP.2014.2334278 |
2 |
GAO Z, HU C, DAI L L, et al Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels. IEEE Communications Letters, 2016, 20 (6): 1259.
doi: 10.1109/LCOMM.2016.2555299 |
3 | WANG Y C, XU W, ZHANG H, et al Wideband mmWave channel estimation for hybrid massive MIMO with low-precision ADCs. IEEE Wireless Communications Letters, 2018, 8 (1): 285- 288. |
4 |
ZHOU Z, FANG J, YANG L X, et al Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMO-OFDM systems. IEEE Journal on Selected Areas in Communications, 2017, 35 (7): 1524- 1538.
doi: 10.1109/JSAC.2017.2699338 |
5 | GHAUCH H, KIM T, BENGTSSON M, et al Subspace estimation and decomposition for large millimeter-wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 2017, 10 (3): 528- 542. |
6 |
QIN Z, YE H, LI G Y, et al Deep learning in physical layer communications. IEEE Wireless Communications, 2019, 26 (2): 93- 99.
doi: 10.1109/MWC.2019.1800601 |
7 |
HE H, WEN C K, JIN S, et al Deep learning-based channel estimation for beamspace mmWave massive MIMO systems. IEEE Wireless Communications Letters, 2018, 7 (5): 852- 855.
doi: 10.1109/LWC.2018.2832128 |
8 | WANG T, WEN C K, JIN S, et al Deep learning-based CSI feedback approach for time-varying massive MIMO channels. IEEE Wireless Communications Letters, 2018, 8 (2): 416- 419. |
9 |
HE H, JIN S, WEN C K, et al Model-driven deep learning for physical layer communications. IEEE Wireless Communications, 2019, 26 (5): 77- 83.
doi: 10.1109/MWC.2019.1800447 |
10 |
KANG J M, CHUN C J, KIM I M Deep-learning-based channel estimation for wireless energy transfer. IEEE Communications Letters, 2018, 22 (11): 2310- 2313.
doi: 10.1109/LCOMM.2018.2871442 |
11 | DONG P, ZHANG H, LI G Y. Machine learning prediction based CSI acquisition for FDD massive MIMO downlink. Proc. of the IEEE Global Communications Conference, 2018. DOI: 10.1109/GLOCOM.2018.8647328. |
12 | JEON Y S, HONG S N, LEE N. Blind detection for MIMO systems with low-resolution ADCs using supervised learning. Proc. of the IEEE International Conference on Communications , 2017. DOI: 10.1109/ICC.2017.7997434. |
13 |
SOLTANI M, POURAHMADI V, MIRZAEI A, et al Deep learning-based channel estimation. IEEE Communications Letters, 2019, 23 (4): 652- 655.
doi: 10.1109/LCOMM.2019.2898944 |
14 |
DONG P, ZHANG H, LI G Y, et al Deep CNN-based channel estimation for mmWave massive MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 2019, 13 (5): 989- 1000.
doi: 10.1109/JSTSP.2019.2925975 |
15 |
JIANG P, WEN C K, JIN S, et al Dual CNN-based channel estimation for MIMO-OFDM systems. IEEE Trans. on Communications, 2021, 69 (9): 5859- 5872.
doi: 10.1109/TCOMM.2021.3085895 |
16 | MARINBERG B, COHEN A, BEN-DROR E, et al. A study on MIMO channel estimation by 2D and 3D convolutional neural networks. Proc. of the IEEE International Conference on Advanced Networks and Telecommunications Systems, 2020. DOI:10.1109/ANTS50601.2020.9342797. |
17 | GE L J, GUO Y C, ZHANG Y, et al Deep neural network based channel estimation for massive MIMO-OFDM systems with imperfect channel state information. IEEE Systems Journal, 2021, 16 (3): 4675- 4685. |
18 |
ZHANG J, MA X L, QI J, et al Designing tensor-train deep neural networks for time-varying MIMO channel estimation. IEEE Journal of Selected Topics in Signal Processing, 2021, 15 (3): 759- 773.
doi: 10.1109/JSTSP.2021.3051490 |
19 | ZHAO M H, ZHONG S S, FU X Y, et al Deep residual shrinkage networks for fault diagnosis. IEEE Trans. on Industrial Informatics, 2019, 16 (7): 4681- 4690. |
20 | DAHLMAN E, PARKVALL S, SKOLD J. 5G NR: the next generation wireless access technology. Cambridge: Academic Press, 2020. |
21 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770−778. |
22 |
CHEN L, DAI X R, ZHANG X F Joint angle and frequency estimation for linear array: an extended DOA-matrix method. Journal of Systems Engineering and Electronics, 2022, 33 (4): 887- 895.
doi: 10.23919/JSEE.2022.000086 |
23 |
SUN S L, LIU S, WANG J, et al Joint polarization and DOA estimation based on improved maximum likelihood estimator and performance analysis for conformal array. Journal of Systems Engineering and Electronics, 2023, 34 (6): 1490- 1500.
doi: 10.23919/JSEE.2023.000048 |
[1] | Yan LIU, Jianxin YI, Xianrong WAN, Yunhua RAO, Caiyong HAO. Channel estimation in integrated radar and communication systems with power amplifier distortion [J]. Journal of Systems Engineering and Electronics, 2024, 35(5): 1098-1108. |
[2] | A. Khoso IMRAN, Xiaofei ZHANG, Hayee Shaikh ABDUL, A. Khoso IHSAN, Ahmed Dayo ZAHEER. Low-complexity signal detection for massive MIMO systems via trace iterative method [J]. Journal of Systems Engineering and Electronics, 2024, 35(3): 549-557. |
[3] | Siting LYU, Xiaohui LI, Tao FAN, Jiawen LIU, Mingli SHI. Deep learning for fast channel estimation in millimeter-wave MIMO systems [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1088-1095. |
[4] | Yumeng SU, Hongyuan GAO, Shibo ZHANG. Energy-efficient resource management for CCFD massive MIMO systems in 6G networks [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 877-886. |
[5] | Yasong LUO, Shengliang HU, Chengxu FENG, Jijin TONG. Power optimization algorithm for OFDM underwater acoustic communication using adaptive channel estimation [J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 662-671. |
[6] | Ruoyu ZHANG, Honglin ZHAO, Jiayan ZHANG, Shaobo JIA. Hybrid orthogonal and non-orthogonal pilot distribution based channel estimation in massive MIMO system [J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 881-898. |
[7] | Jiansheng HU, Zuxun SONG, Shuxia GUO, Qian ZHANG, Dongdong SHUI. Sparse channel recovery with inter-carrier interference self-cancellation in OFDM [J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 676-683. |
[8] | Xu Wang, Tao Yang, and Bo Hu. Low-complexity fractional phase estimation for totally blind channel estimation [J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 232-240. |
[9] | Xiaofei Zhang and Dazhuan Xu. Blind channel estimation for multiple antenna OFDM system subject to unknown carrier frequency offset [J]. Journal of Systems Engineering and Electronics, 2014, 25(5): 721-727. |
[10] | Donghua Chen and Hongbing Qiu. Mobile channel estimation for MU-MIMO systems using KL expansion based extrapolation [J]. Journal of Systems Engineering and Electronics, 2012, 23(3): 349-354. |
[11] | Peng Xu, Jinkuan Wang, and Feng Qi. Improved H-infinity channel estimator based on EM for MIMO-OFDM systems [J]. Journal of Systems Engineering and Electronics, 2011, 22(4): 572-578. |
[12] | Yang Zhang, Jiandong Li, and Lihua Pang. Hybrid pilots assisted channel estimation algorithm for MIMO-OFDM systems [J]. Journal of Systems Engineering and Electronics, 2010, 21(5): 721-728. |
[13] | Xiaoping Zhou, Yong Fang, and Min Wang. Compressed sensing based channel estimation for fast fading OFDM systems [J]. Journal of Systems Engineering and Electronics, 2010, 21(4): 550-556. |
[14] | Maoge Xu and Yaoliang Song. Bayesian sequential state estimation for MIMO-OFDM systems [J]. Journal of Systems Engineering and Electronics, 2010, 21(1): 148-153. |
[15] | Pang Jiyong, Li Jiandong, Lu Zhuo, Zhao Linjing & Chen Liang. Optimal training sequences for MIMO systems under correlated fading [J]. Journal of Systems Engineering and Electronics, 2008, 19(1): 33-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||