
Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (6): 1548-1561.doi: 10.23919/JSEE.2025.000178
• SYSTEMS ENGINEERING • Previous Articles
Meigen HUANG(
), Tao WANG(
), Tian JING(
), Song YANG(
), Xin ZHOU(
), Hua HE(
)
Received:2024-09-20
Online:2025-12-18
Published:2026-01-07
Contact:
Tao WANG
E-mail:huangmg19@nudt.edu.cn;wangtao1976@nudt.edu.cn;jingtiannudt@163.com;ysxwc@163.com;zhouxin09@nudt.edu.cn;hehua3566@nudt.edu.cn
About author:Supported by:Meigen HUANG, Tao WANG, Tian JING, Song YANG, Xin ZHOU, Hua HE. Case-based reasoning of operation strategies recommendation for UAV swarm[J]. Journal of Systems Engineering and Electronics, 2025, 36(6): 1548-1561.
Table 1
Main Features and applicable scenarios of UAV swarm operation strategies"
| Acronym | Type | Main feature | Applicable scenario |
| EO | Effectiveness-oriented strategy | Prioritize achieving operation effectiveness, such as increasing UAV or payload scale | Close reconnaissance on key target objects |
| TO | Time-oriented strategy | Prioritize reducing operation time, such as decreasing reconnaissance frequency | Tracking and striking time-sensitive target objects |
| CO | Cost-oriented strategy | Prioritize compressing operation costs, such as reducing ammunition quantity | Routine harassment of regular target objects |
| EA | Effectiveness-averse strategy | Weigh operation time and cost, such as adopting high-altitude reconnaissance | Lowthreat reconnaissance of target areas |
| TA | Time-averse strategy | Weigh operation effectiveness and cost, such as adopting air-ground coordination action | Cost-effective strike on key target objects |
| CA | Cost-averse strategy | Weigh operation effectiveness and time, such as adopting reconnaissance and strike integrated action | Saturated strike on time-sensitive target objects |
Table 2
Operation case presentation of UAV swarms"
| Case | Problem description | Solution | Solution effectiveness | |||||||
| … | ||||||||||
| Source cases | … | |||||||||
| … | ||||||||||
| … | ||||||||||
| Target cases | … | − | − | − | ||||||
| … | − | − | − | |||||||
| − | − | − | ||||||||
| … | − | − | − | |||||||
Table 3
Attribute values of source cases and target cases"
| Case | Attribute value | Strategy | Effectiveness | |||||||||||
| 5 | 2 | 500 | 1 | 4 | 3 | 200 | 4 | 5 | CO | 0.83 | ||||
| 5 | 5 | 300 | 3 | 1 | 5 | 300 | 5 | 1 | EO | 1.00 | ||||
| 6 | 3 | 500 | 2 | 2 | 4 | 150 | 3 | 4 | EO | 1.17 | ||||
| 4 | 4 | 450 | 1 | 1 | 6 | 200 | 2 | 2 | TO | 0.86 | ||||
| 6 | 5 | 350 | 4 | 2 | 2 | 350 | 1 | 3 | TA | 1.00 | ||||
| 5 | 2 | 500 | 3 | 2 | 6 | 200 | 5 | 5 | CA | 1.17 | ||||
| 10 | 2 | 550 | 1 | 3 | 3 | 300 | 1 | 5 | TA | 1.25 | ||||
| 4 | 5 | 400 | 2 | 3 | 5 | 180 | 3 | 1 | TO | 1.14 | ||||
| 8 | 2 | 300 | 2 | 1 | 4 | 200 | 1 | 3 | CO | 0.75 | ||||
| 6 | 5 | 500 | 3 | 2 | 7 | 230 | 3 | 2 | EA | 0.86 | ||||
| 8 | 4 | 300 | 3 | 2 | 4 | 400 | 4 | 4 | − | − | − | |||
| 7 | 3 | 400 | 2 | 3 | 3 | 300 | 5 | 3 | − | − | − | |||
| 6 | 2 | 300 | 3 | 1 | 5 | 250 | 2 | 2 | − | − | − | |||
| 3 | 5 | 400 | 4 | 3 | 4 | 300 | 1 | 3 | − | − | − | |||
Table 4
Similarity calculation of $ {{\boldsymbol{a}}}_{{\boldsymbol{4}}} $"
| Fragile (1) | Poor (2) | Good (3) | Hard (4) | |
| Fragile (1) | 1 | 0.889 | 0.599 | 0.352 |
| Poor (2) | 0.889 | 1 | 0.649 | 0.391 |
| Good (3) | 0.599 | 0.649 | 1 | 0.739 |
| Hard (4) | 0.352 | 0.391 | 0.739 | 1 |
| Triangular fuzzy numbers | (0,0,1/3) | (0,1/3,2/3) | (1/3,2/3,1) | (2/3,1,1) |
Table 5
Results of global similarity calculation"
| Target case | ||||
| 0.659 | 0.808 | 0.651 | 0.709 | |
| 0.781 | 0.730 | 0.911 | 0.765 | |
| 0.762 | 0.792 | 0.779 | 0.712 | |
| 0.610 | 0.649 | 0.808 | 0.693 | |
| 0.786 | 0.786 | 0.749 | 0.799 | |
| 0.721 | 0.687 | 0.790 | 0.713 | |
| 0.723 | 0.829 | 0.596 | 0.673 | |
| 0.642 | 0.755 | 0.759 | 0.803 | |
| 0.829 | 0.780 | 0.820 | 0.675 | |
| 0.705 | 0.684 | 0.828 | 0.69 | |
Table 6
Results of attribute similarity calculation ($ {\boldsymbol{T}}_{{\boldsymbol{1}}} $)"
| 0.5 | 0.333 | 0.775 | 0.599 | 0.333 | 0.8 | 0.707 | 1 | 0.805 | |
| 0.5 | 0.667 | 1 | 1 | 0.667 | 0.8 | 0.866 | 0.7 | 0.441 | |
| 0.667 | 0.667 | 0.775 | 0.649 | 1 | 1 | 0.612 | 0.3 | 1 | |
| 0.333 | 1 | 0.816 | 0.599 | 0.667 | 0.6 | 0.707 | 0.3 | 0.473 | |
| 0.667 | 0.667 | 0.926 | 0.739 | 1 | 0.6 | 0.935 | 0.3 | 0.736 | |
| 0.5 | 0.333 | 0.775 | 1 | 1 | 0.6 | 0.707 | 0.7 | 0.805 | |
| 0.667 | 0.333 | 0.739 | 0.599 | 0.667 | 0.8 | 0.866 | 0.3 | 0.805 | |
| 0.333 | 0.667 | 0.866 | 0.649 | 0.667 | 0.8 | 0.671 | 0.3 | 0.441 | |
| 1 | 0.333 | 1 | 0.649 | 0.667 | 1 | 0.707 | 0.3 | 0.736 | |
| 0.667 | 0.667 | 0.775 | 1 | 1 | 0.4 | 0.758 | 0.3 | 0.473 |
Table 7
Recalculated attribute and global similarity"
| Case | Attribute similarity | Global similarity | |||
| 0.116 | 0.156 | 0.142 | 0.414 | ||
| 0.087 | 0.148 | 0.174 | 0.410 | ||
Table 10
The simulations result"
| Operation strategy | Average loss of attack UAVs | Average number of ground facilities destroyed | Cost-effectiveness ratio | Average number of bombs consumed | Average task completion time |
| EO | 4.17 | 3.986 | 1.046 | 35.272 | 23.468 |
| TO | 3.89 | 3.516 | 1.106 | 32 | 14.306 |
| CO | 3.39 | 3.496 | 0.970 | 16 | 21.976 |
| EA | 4.082 | 2.95 | 1.384 | 16 | 13.922 |
| TA | 4.634 | 3.934 | 1.178 | 19.784 | 26.138 |
| CA | 5.99 | 3.348 | 1.789 | 31.46 | 14.447 |
| Average | 4.359 | 3.538 | 1.246 | 25.086 | 19.043 |
| 1 | SADAF J, ALI H, RIZWAN A, et al. State-ofthe-art and future research challenges in UAV swarms. IEEE Internet of Things Journal, 2024, 11: 19023–19045. |
| 2 |
ELGHITANI F Dynamic UAV routing for multi-access edge computing. IEEE Trans. on Vehicular Technology, 2024, 73 (6)
doi: 10.1109/TVT.2024.3394433 |
| 3 |
KIM J Y, OH H, YU B Y, et al Optimal task assignment for UAV swarm operations in hostile environments. International Journal of Aeronautical and Space Sciences, 2021, 22 (2): 456- 467.
doi: 10.1007/s42405-020-00317-z |
| 4 | KONG L H, WANG L Z, CAO Z Z, et al Resilience evaluation of UAV swarm considering resource supplementation. Reliability Engineering & System Safety, 2024, 241, 109673. |
| 5 | LIU D, WASSON R, VINCENZI D A Effects of system automation management strategies and multi-mission operator-to-vehicle ratio on operator performance in UAV systems. Journal of Intelligent & Robotic Systems, 2009, 54 (5): 795- 810. |
| 6 | SUN L K, QIU H X, WANG Y Z, et al. Autonomous UAV maneuvering decisions by refining opponent strategies. IEEE Trans. on Aerospace and Electronic Systems, 2024, 60(3): 3454–3467. |
| 7 | ZHANG B Q, LIN X, ZHU Y F. Enhancing multi-UAV reconnaissance and search through double critic DDPG with belief probability maps. IEEE Tran. on Intelligent Vehicles, 2024, 9(2): 3827–3842. |
| 8 | ZHANG X, BAI Y J, HE K On countermeasures against cooperative fly of UAV swarms. Drones, 2023, (3): 172. |
| 9 | XU J W, DENG Z H, SONG Q, et al Multi-UAV counter-game model based on uncertain information. Applied Mathematics & Computation, 2020, 366, 124684. |
| 10 | RAN W Z, LUO R, ZHANG F N, et al Research on efficient multiagent reinforcement learning for multiple UAVs’ distributed jamming strategy. Electronics, 2023, 12, (8): 3874. |
| 11 | WU X L, LIN D X, ZHEN R, et al Avoidance priority operation strategy of UAV based on improved greycorrelation projection method. Journal of Hebei University of Science and Technology, 2022, 43 (4): 374- 385. |
| 12 |
ZHENG J, WANG Y M, CHEN S Q Dynamic case retrieval method with subjective preferences and objective information for emergency decision making. IEEE/ CAA Journal of Automatica Sinica, 2018, 5 (3): 749- 757.
doi: 10.1109/JAS.2016.7510232 |
| 13 |
SIMON P, CLAUDE T Knowledge-intensive diagnostics using case-based reasoning and synthetic case generation. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42 (7): 2404- 2417.
doi: 10.1109/TCAD.2022.3222287 |
| 14 |
TARCHOUNE I, DJEBBAR A, MEROUANI H F D, et al 3FS-CBR-IRF: improving case retrieval for case-based reasoning with three feature selection and improved random forest. Multimedia Tools and Applications, 2024, 83, 72939- 72973.
doi: 10.1007/s11042-024-18360-3 |
| 15 | CHEN J H, WANG B Q, WANG F, et al Identification of outcropping strata from UAV oblique photogrammetric data using a spatial case-based reasoning model. International Journal of Applied Earth Observation and Geoinformation, 2021, 103, 102450. |
| 16 | PINTO M F, MELO A G, MARCATO A L M, et al. Case-based reasoning approach applied to surveillance system using an autonomous unmanned aerial vehicle. Proc. of the IEEE 26th International Symposium on Industrial Electronics, 2017: 1324−1329. |
| 17 | GU L C, GUO Q Y, CAO M Case retrieval algorithm based on structure matrix. Journal of Multimedia, 2013, 8 (6): 712- 719. |
| 18 |
FAN Z P, LI Y H, WANG X H, et al Hybrid similarity measure for case retrieval in CBR and its application to emergency response towards gas explosion. Expert Systems with Applications, 2014, 41 (5): 2526- 2534.
doi: 10.1016/j.eswa.2013.09.051 |
| 19 |
WANG Y M, FEI L G, FENG Y Q A hybrid retrieval strategy for case-based reasoning using soft likelihood functions. Soft Computing, 2022, 26 (7): 3489- 3501.
doi: 10.1007/s00500-022-06733-5 |
| 20 |
ABDELHAK M, BAGHDAD A Representative case-based retrieval to support case-based reasoning for prediction. International Journal of Strategic Decision Sciences, 2021, 12 (3): 14- 35.
doi: 10.4018/IJSDS.2021070102 |
| 21 | KOVALENKO I I, SHVED A V, KOVAL N V A modified case-based reasoning method based on the rough set theory. Radio Electronics, Computer Science, Control, 2018, (4): 106- 112. |
| 22 |
PREEJA P, MARTA C, ANJANA W A practical exploration of the convergence of case-based reasoning and explainable artificial intelligence. Expert Systems with Applications, 2024, 255, 124733.
doi: 10.1016/j.eswa.2024.124733 |
| 23 |
AAMODT A, PLAZA E Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Communications, 1994, 7 (1): 39- 59.
doi: 10.3233/AIC-1994-7104 |
| 24 |
KEANU S, JULIE D, JULIEN T Wasserstein dictionaries of persistence diagrams. IEEE Trans. on visualization and computer graphics, 2024, 30 (2): 1638- 1651.
doi: 10.1109/TVCG.2023.3330262 |
| 25 | MATSOUAKA R, LIU Y, ZHOU Y J. Overlap, matching, or entropy weights: what are we weighting for? [J]. Communications in Statistics: Simulation & Computation, 2024, 53(2): 2672–2691. |
| [1] | Yuelong LUO, Xiuqiang JIANG, Suchuan ZHONG, Yuandong JI. Air-to-ground reconnaissance-attack task allocation for heterogeneous UAV swarm [J]. Journal of Systems Engineering and Electronics, 2025, 36(1): 155-175. |
| [2] | Zhiwen XIAO, Xiaowei FU. A cooperative detection game: UAV swarm vs. one fast intruder [J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 1565-1575. |
| [3] | Boyu QIN, Dong ZHANG, Shuo TANG, Yang XU. Two-layer formation-containment fault-tolerant control of fixed-wing UAV swarm for dynamic target tracking [J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 1375-1396. |
| [4] | Yaozhong ZHANG, Yike LI, Zhuoran WU, Jialin XU. Deep reinforcement learning for UAV swarm rendezvous behavior [J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 360-373. |
| [5] | Jie LI, Xiaoyu DANG, Sai LI. DQN-based decentralized multi-agent JSAP resource allocation for UAV swarm communication [J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 289-298. |
| [6] | Hao LI, Hemin SUN, Ronghua ZHOU, Huainian ZHANG. Hybrid TDOA/FDOA and track optimization of UAV swarm based on A-optimality [J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 149-159. |
| [7] | Yangyang JIANG, Yan GAO, Wenqi SONG, Yue LI, Quan QUAN. Bibliometric analysis of UAV swarms [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 406-425. |
| [8] | Jinqiang HU, Husheng WU, Renjun ZHAN, Rafik MENASSEL, Xuanwu ZHOU. Self-organized search-attack mission planning for UAV swarm based on wolf pack hunting behavior [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1463-1476. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||