30 Most Down Articles
Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month| Most Downloaded in Recent Year|

Most Downloaded in Recent Month
Please wait a minute...
For Selected: Toggle Thumbnails
Disparity estimation for multi-scale multi-sensor fusion
Guoliang SUN, Shanshan PEI, Qian LONG, Sifa ZHENG, Rui YANG
Journal of Systems Engineering and Electronics    2024, 35 (2): 259-274.   DOI: 10.23919/JSEE.2023.000101
Abstract31)   HTML6)    PDF(pc) (9297KB)(55)       Save

The perception module of advanced driver assistance systems plays a vital role. Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer. This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme. A binocular stereo vision sensor composed of two cameras and a light deterction and ranging (LiDAR) sensor is used to jointly perceive the environment, and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map. This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors. Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.

Table and Figures | Reference | Related Articles | Metrics
Computation of satellite clock-ephemeris augmentation parameters for dual-frequency multi-constellation satellite-based augmentation system
Jie CHEN, Zhigang HUANG, Rui LI
Journal of Systems Engineering and Electronics    2018, 29 (6): 1111-1123.   DOI: 10.21629/JSEE.2018.06.01
Abstract300)   HTML2)    PDF(pc) (1120KB)(966)       Save

Dual-frequency multi-constellation (DFMC) satellitebased augmentation system (SBAS) does not broadcast fast correction, which is important in reducing range error in L1-only SBAS. Meanwhile, the integrity bound of a satellite at low elevation is so loose that the service availability is decreased near the boundary of the service area. Therefore, the computation of satellite clockephemeris (SCE) augmentation parameters needs improvement. We propose a method introducing SCE prediction to eliminate most of the SCE error resulting from global navigation satellite system GNSS broadcast message. Compared with the signal-inspace (SIS) after applying augmentation parameters broadcast by the wide area augmentation system (WAAS), SIS accuracy after applying augmentation parameters computed by the proposed algorithm is improved and SIS integrity is ensured. With global positioning system (GPS) only, the availability of category-I (CAT-I) with a vertical alert level of 15 m in continental United States is about 90%, while the availability in the other part of the WAAS service area is markedly improved. With measurements made by the stations from the crustal movement observation network of China, users in some part of China can obtain CAT-I (vertical alert limit is 15 m) service with GPS and global navigation satellite system (GLONASS).

Table and Figures | Reference | Related Articles | Metrics
Real-time UAV path planning based on LSTM network
Jiandong ZHANG, Yukun GUO, Lihui ZHENG, Qiming YANG, Guoqing SHI, Yong WU
Journal of Systems Engineering and Electronics    2024, 35 (2): 374-385.   DOI: 10.23919/JSEE.2023.000157
Abstract12)   HTML11)    PDF(pc) (2150KB)(48)       Save

To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle (UAV) real-time path planning problem, a real-time UAV path planning algorithm based on long short-term memory (RPP-LSTM) network is proposed, which combines the memory characteristics of recurrent neural network (RNN) and the deep reinforcement learning algorithm. LSTM networks are used in this algorithm as Q-value networks for the deep Q network (DQN) algorithm, which makes the decision of the Q-value network has some memory. Thanks to LSTM network, the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment. Besides, the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning, so that the UAV can more reasonably perform path planning. Simulation verification shows that compared with the traditional feed-forward neural network (FNN) based UAV autonomous path planning algorithm, the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.

Table and Figures | Reference | Related Articles | Metrics
Highly maneuvering target tracking using multi-parameter fusion Singer model
Shuyi Jia, Yun Zhang, and Guohong Wang
Systems Engineering and Electronics    DOI: 10.21629/JSEE.2017.05.03
Overview of radar detection methods for low altitude targets in marine environments
Yong YANG, Boyu YANG
Journal of Systems Engineering and Electronics    2024, 35 (1): 1-13.   DOI: 10.23919/JSEE.2024.000026
Abstract279)   HTML52)    PDF(pc) (4486KB)(214)       Save

In this paper, a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented, focusing on the challenges posed by sea clutter and multipath scattering. The performance of the radar detection methods under sea clutter, multipath, and combined conditions is categorized and summarized, and future research directions are outlined to enhance radar detection performance for low–altitude targets in maritime environments.

Table and Figures | Reference | Related Articles | Metrics
Recognition and interfere deceptive behavior based on inverse reinforcement learning and game theory
Yunxiu ZENG, Kai XU
Journal of Systems Engineering and Electronics    2023, 34 (2): 270-288.   DOI: 10.23919/JSEE.2023.000012
Abstract107)   HTML5)    PDF(pc) (8851KB)(192)       Save

In real-time strategy (RTS) games, the ability of recognizing other players’ goals is important for creating artifical intelligence (AI) players. However, most current goal recognition methods do not take the player ’s deceptive behavior into account which often occurs in RTS game scenarios, resulting in poor recognition results. In order to solve this problem, this paper proposes goal recognition for deceptive agent, which is an extended goal recognition method applying the deductive reason method (from general to special) to model the deceptive agent’s behavioral strategy. First of all, the general deceptive behavior model is proposed to abstract features of deception, and then these features are applied to construct a behavior strategy that best matches the deceiver’s historical behavior data by the inverse reinforcement learning (IRL) method. Final, to interfere with the deceptive behavior implementation, we construct a game model to describe the confrontation scenario and the most effective interference measures.

Table and Figures | Reference | Related Articles | Metrics
Distributed collaborative complete coverage path planning based on hybrid strategy
Jia ZHANG, Xin DU, Qichen DONG, Bin XIN
Journal of Systems Engineering and Electronics    2024, 35 (2): 463-472.   DOI: 10.23919/JSEE.2023.000118
Abstract13)   HTML2)    PDF(pc) (5593KB)(27)       Save

Collaborative coverage path planning (CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle (UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment. Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with pattern-based genetic algorithm (PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.

Table and Figures | Reference | Related Articles | Metrics
Aerial target threat assessment based on gated recurrent unit and self-attention mechanism
Chen CHEN, Wei QUAN, Zhuang SHAO
Journal of Systems Engineering and Electronics    2024, 35 (2): 361-373.   DOI: 10.23919/JSEE.2023.000116
Abstract23)   HTML17)    PDF(pc) (5946KB)(26)       Save

Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit (SA-GRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform (FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features. Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning.

Table and Figures | Reference | Related Articles | Metrics
LMI approach to reliable ffoo control of linear systems
Yao Bo & Wang Fuzhong
Journal of Systems Engineering and Electronics    2006, 17 (2): 381-386.   DOI: 10.1016/S1004-4132(06)60065-0
Abstract101)      PDF(pc) (804KB)(41)       Save
The reliable design problem for linear systems is concerned with. A more practical model of actuator faults than outage is considered. An LMI approach of designing reliable controller is presented for the case of actuator faults that can be modeled by a scaling factor. The resulting control systems are reliable in that they provide guaranteed asymptotic stability and Hoo performance when some control component (actuator) faults occur. A numerical example is also given to illustrate the design procedure and their effectiveness. Furthermore, the optimal standard controller and the optimal reliable controller are compared to show the necessity of reliable control. 
Related Articles | Metrics
Localization for mixed near-field and far-field sources under impulsive noise
Hongyuan GAO, Yuze ZHANG, Ya’nan DU, Jianhua CHENG, Menghan CHEN
Journal of Systems Engineering and Electronics    2024, 35 (2): 302-315.   DOI: 10.23919/JSEE.2023.000065
Abstract38)   HTML2)    PDF(pc) (9920KB)(24)       Save

In order to solve the problem that the performance of traditional localization methods for mixed near-field sources (NFSs) and far-field sources (FFSs) degrades under impulsive noise, a robust and novel localization method is proposed. After eliminating the impacts of impulsive noise by the weighted outlier filter, the direction of arrivals (DOAs) of FFSs can be estimated by multiple signal classification (MUSIC) spectral peaks search. Based on the DOAs information of FFSs, the separation of mixed sources can be performed. Finally, the estimation of localizing parameters of NFSs can avoid two-dimension spectral peaks search by decomposing steering vectors. The Cramer-Rao bounds (CRB) for the unbiased estimations of DOA and range under impulsive noise have been drawn. Simulation experiments verify that the proposed method has advantages in probability of successful estimation (PSE) and root mean square error (RMSE) compared with existing localization methods. It can be concluded that the proposed method is effective and reliable in the environment with low generalized signal to noise ratio (GSNR), few snapshots, and strong impulse.

Table and Figures | Reference | Related Articles | Metrics
Sound event localization and detection based on deep learning
Dada ZHAO, Kai DING, Xiaogang QI, Yu CHEN, Hailin FENG
Journal of Systems Engineering and Electronics    2024, 35 (2): 294-301.   DOI: 10.23919/JSEE.2023.000110
Abstract15)   HTML5)    PDF(pc) (5966KB)(23)       Save

Acoustic source localization (ASL) and sound event detection (SED) are two widely pursued independent research fields. In recent years, in order to achieve a more complete spatial and temporal representation of sound field, sound event localization and detection (SELD) has become a very active research topic. This paper presents a deep learning-based multi-overlapping sound event localization and detection algorithm in three-dimensional space. Log-Mel spectrum and generalized cross-correlation spectrum are joined together in channel dimension as input features. These features are classified and regressed in parallel after training by a neural network to obtain sound recognition and localization results respectively. The channel attention mechanism is also introduced in the network to selectively enhance the features containing essential information and suppress the useless features. Finally, a thourough comparison confirms the efficiency and effectiveness of the proposed SELD algorithm. Field experiments show that the proposed algorithm is robust to reverberation and environment and can achieve higher recognition and localization accuracy compared with the baseline method.

Table and Figures | Reference | Related Articles | Metrics
Product quality prediction based on RBF optimized by firefly algorithm
Huihui HAN, Jian WANG, Sen CHEN, Manting YAN
Journal of Systems Engineering and Electronics    2024, 35 (1): 105-117.   DOI: 10.23919/JSEE.2023.000061
Abstract13)   HTML3)    PDF(pc) (5471KB)(29)       Save

With the development of information technology, a large number of product quality data in the entire manufacturing process is accumulated, but it is not explored and used effectively. The traditional product quality prediction models have many disadvantages, such as high complexity and low accuracy. To overcome the above problems, we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model: radial basis function model optimized by the firefly algorithm with Levy flight mechanism (RBFFALM). First, the new data equalization method is introduced to pre-process the dataset, which reduces the dimension of the data, removes redundant features, and improves the data distribution. Then the RBFFALFM is used to predict product quality. Comprehensive experiments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous methods on predicting pro-duct quality.

Table and Figures | Reference | Related Articles | Metrics
Special Section on Autonomous Decision and Cooperative Control of UAV Swarms
Wenwu YU, Wei REN, Dong ZHANG
Journal of Systems Engineering and Electronics    2023, 34 (6): 0-0.  
Abstract155)   HTML36)    PDF(pc) (734KB)(209)       Save
Reference | Related Articles | Metrics
Fast measurement and prediction method for electromagnetic susceptibility of receiver
Yan CHEN, Zhonghao LU, Yunxia LIU
Journal of Systems Engineering and Electronics    2024, 35 (2): 275-285.   DOI: 10.23919/JSEE.2023.000127
Abstract12)   HTML3)    PDF(pc) (8682KB)(19)       Save

Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments, a novel testing and prediction method based on dual-channel multi-frequency is proposed to improve the traditional two-tone test. Firstly, two signal generators are used to generate signals at the radio frequency (RF) by frequency scanning, and then a rapid measurement at the intermediate frequency (IF) output port is carried out to obtain a huge amount of sample data for the subsequent analysis. Secondly, the IF output response data are modeled and analyzed to construct the linear and nonlinear response constraint equations in the frequency domain and prediction models in the power domain, which provide the theoretical criteria for interpreting and predicting electromagnetic susceptibility (EMS) of the receiver. An experiment performed on a radar receiver confirms the reliability of the method proposed in this paper. It shows that the interference of each harmonic frequency and each order to the receiver can be identified and predicted with the sensitivity model. Based on this, fast and comprehensive evaluation and prediction of the receiver’s EMS in complex environment can be efficiently realized.

Table and Figures | Reference | Related Articles | Metrics
Lanchester equation for cognitive domain using hesitant fuzzy linguistic terms sets
Qi HAN, Weimin LI, Qiling XU, Minrui ZHAO, Runze HUO, Tao ZHANG
Journal of Systems Engineering and Electronics    2022, 33 (3): 674-682.   DOI: 10.23919/JSEE.2022.000062
Abstract51)   HTML0)    PDF(pc) (6434KB)(73)       Save

Intelligent wars can take place not only in the physical domain and information domain but also in the cognitive domain. The cognitive domain will become the key domain to win in the future intelligent war. A Lanchester equation considering cognitive domain is proposed to fit the development tendency intelligent wars in this paper. One party is considered to obtain the exponential enhancement advantage on combat forces in combat if it can gain an advantage in the cognitive domain over the other party according to the systemic advantage function. The operational effectiveness of the cognitive domain in war is considered to consist of a series of indicators. Hesitant fuzzy sets and linguistic term sets are powerful tools when evaluating indicators, hence the indicators are scored by experts using hesitant fuzzy linguistic terms sets here. A unique hesitant fuzzy hybrid arithmetical averaging operator is used to aggregate the evaluation.

Table and Figures | Reference | Related Articles | Metrics
Optimal maneuvering strategy of spacecraft evasion based on angles-only measurement and observability analysis
Yijie ZHANG, Jiongqi WANG, Bowen HOU, Dayi WANG, Yuyun CHEN
Journal of Systems Engineering and Electronics    2023, 34 (1): 172-184.   DOI: 10.23919/JSEE.2023.000026
Abstract73)   HTML1)    PDF(pc) (8665KB)(48)       Save

Spacecraft orbit evasion is an effective method to ensure space safety. In the spacecraft’s orbital plane, the space non-cooperate target with autonomous approaching to the spacecraft may have a dangerous rendezvous. To deal with this problem, an optimal maneuvering strategy based on the relative navigation observability degree is proposed with angles-only measurements. A maneuver evasion relative navigation model in the spacecraft’s orbital plane is constructed and the observabi-lity measurement criteria with process noise and measurement noise are defined based on the posterior Cramer-Rao lower bound. Further, the optimal maneuver evasion strategy in spacecraft’s orbital plane based on the observability is proposed. The strategy provides a new idea for spacecraft to evade safety threats autonomously. Compared with the spacecraft evasion problem based on the absolute navigation, more accurate evasion results can be obtained. The simulation indicates that this optimal strategy can weaken the system’s observability and reduce the state estimation accuracy of the non-cooperative target, making it impossible for the non-cooperative target to accurately approach the spacecraft.

Table and Figures | Reference | Related Articles | Metrics
Two-layer formation-containment fault-tolerant control of fixed-wing UAV swarm for dynamic target tracking
Boyu QIN, Dong ZHANG, Shuo TANG, Yang XU
Journal of Systems Engineering and Electronics    2023, 34 (6): 1375-1396.   DOI: 10.23919/JSEE.2023.000153
Abstract219)   HTML24)    PDF(pc) (22266KB)(276)       Save

This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle (UAV) swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs ’ actuator and sensor. The fixed-wing UAV swarm under consideration is organized as a “multi-leader-multi-follower” structure, in which only several leaders can obtain the dynamic target information while others only receive the neighbors’ information through the communication network. To simultaneously realize the formation, containment, and dynamic target tracking, a two-layer control framework is adopted to decouple the problem into two subproblems: reference trajectory generation and trajectory tracking. In the upper layer, a distributed finite-time estimator (DFTE) is proposed to generate each UAV ’s reference trajectory in accordance with the control objective. Subsequently, a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer, where a novel adaptive extended super-twisting (AESTW) algorithm with a finite-time extended state observer (FTESO) is involved in solving the robust trajectory tracking control problem under model uncertainties, actuator, and sensor faults. The proposed controller simultaneously guarantees rapidness and enhances the system ’s robustness with fewer chattering effects. Finally, corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme.

Table and Figures | Reference | Related Articles | Metrics
Robust adaptive radar beamforming based on iterative training sample selection using kurtosis of generalized inner product statistics
Jing TIAN, Wei ZHANG
Journal of Systems Engineering and Electronics    2024, 35 (1): 24-30.   DOI: 10.23919/JSEE.2024.000025
Abstract84)   HTML7)    PDF(pc) (2688KB)(75)       Save

In engineering application, there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval (PRI). Therefore, if the training samples used to calculate the weight vector does not contain the jamming, then the jamming cannot be removed by adaptive spatial filtering. If the weight vector is constantly updated in the range dimension, the training data may contain target echo signals, resulting in signal cancellation effect. To cope with the situation that the training samples are contaminated by target signal, an iterative training sample selection method based on non-homogeneous detector (NHD) is proposed in this paper for updating the weight vector in entire range dimension. The principle is presented, and the validity is proven by simulation results.

Table and Figures | Reference | Related Articles | Metrics
CONTENTS
Journal of Systems Engineering and Electronics    2024, 35 (2): 0-.  
Abstract13)      PDF(pc) (112KB)(18)       Save
Related Articles | Metrics
News event prediction by trigger evolution graph and event segment
Yaru ZHANG, Xijin TANG
Journal of Systems Engineering and Electronics    2023, 34 (3): 615-626.   DOI: 10.23919/JSEE.2023.000083
Abstract48)   HTML3)    PDF(pc) (2789KB)(54)       Save

Event prediction aims to predict the most possible following event given a chain of closely related context events. Previous methods based on event pairs or the entire event chain may ignore much structural and semantic information. Current datasets for event prediction, naturally, can be used for supervised learning. Event chains are either from document-level procedural action flow, or from news sequences under the same column. This paper leverages graph structure knowledge of event triggers and event segment information for event prediction with general news corpus, and adopts the standard multiple choice narrative cloze task evaluation. The topic model is utilized to extract event chains from the news corpus to deal with training data bottleneck. Based on trigger-guided structural relations in the event chains, we construct trigger evolution graph, and trigger representations are learned through graph convolutional neural network and the novel neighbor selection strategy. Then there are features of two levels for each event, namely, text level semantic feature and trigger level structural feature. We design the attention mechanism to learn the features of event segments derived in term of event major subjects, and integrate relevance between event segments and the candidate event. The most possible next event is picked by the relevance. Experimental results on the real-world news corpus verify the effectiveness of the proposed model.

Table and Figures | Reference | Related Articles | Metrics
Classification of aviation incident causes using LGBM with improved cross-validation
Xiaomei NI, Huawei WANG, Lingzi CHEN, Ruiguan LIN
Journal of Systems Engineering and Electronics    2024, 35 (2): 396-405.   DOI: 10.23919/JSEE.2024.000035
Abstract8)   HTML2)    PDF(pc) (5916KB)(17)       Save

Aviation accidents are currently one of the leading causes of significant injuries and deaths worldwide. This entices researchers to investigate aircraft safety using data analysis approaches based on an advanced machine learning algorithm. To assess aviation safety and identify the causes of incidents, a classification model with light gradient boosting machine (LGBM) based on the aviation safety reporting system (ASRS) has been developed. It is improved by k-fold cross-validation with hybrid sampling model (HSCV), which may boost classification performance and maintain data balance. The results show that employing the LGBM-HSCV model can significantly improve accuracy while alleviating data imbalance. Vertical comparison with other cross-validation (CV) methods and lateral comparison with different fold times comprise the comparative approach. Aside from the comparison, two further CV approaches based on the improved method in this study are discussed: one with a different sampling and folding order, and the other with more CV. According to the assessment indices with different methods, the LGBM-HSCV model proposed here is effective at detecting incident causes. The improved model for imbalanced data categorization proposed may serve as a point of reference for similar data processing, and the model’s accurate identification of civil aviation incident causes can assist to improve civil aviation safety.

Table and Figures | Reference | Related Articles | Metrics
Review of local mean decomposition and its application in fault diagnosis of rotating machinery
Yongbo LI, Shubin SI, Zhiliang LIU, Xihui LIANG
Journal of Systems Engineering and Electronics    2019, 30 (4): 799-814.   DOI: 10.21629/JSEE.2019.04.17
Abstract390)   HTML7)    PDF(pc) (803KB)(816)       Save

Rotating machinery is widely used in the industry. They are vulnerable to many kinds of damages especially for those working under tough and time-varying operation conditions. Early detection of these damages is important, otherwise, they may lead to large economic loss even a catastrophe. Many signal processing methods have been developed for fault diagnosis of the rotating machinery. Local mean decomposition (LMD) is an adaptive mode decomposition method that can decompose a complicated signal into a series of mono-components, namely product functions (PFs). In recent years, many researchers have adopted LMD in fault detection and diagnosis of rotating machines. We give a comprehensive review of LMD in fault detection and diagnosis of rotating machines. First, the LMD is described. The advantages, disadvantages and some improved LMD methods are presented. Then, a comprehensive review on applications of LMD in fault diagnosis of the rotating machinery is given. The review is divided into four parts:fault diagnosis of gears, fault diagnosis of rotors, fault diagnosis of bearings, and other LMD applications. In each of these four parts, a review is given to applications applying the LMD, improved LMD, and LMD-based combination methods, respectively. We give a summary of this review and some future potential topics at the end.

Table and Figures | Reference | Related Articles | Metrics
Intuitionistic fuzzy C-means clustering algorithms
Zeshui Xu and Junjie Wu
Journal of Systems Engineering and Electronics    2010, 21 (4): 580-590.   DOI: 10.3969/j.issn.1004-4132.2010.04.009
Abstract1208)      PDF(pc) (410KB)(1204)       Save
Intuitionistic fuzzy sets (IFSs) are useful means to describe and deal with vague and uncertain data. An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed. In each stage of the intuitionistic fuzzy C-means method the seeds are modified, and for each IFS a membership degree to each of the clusters is estimated. In the end of the algorithm, all the given IFSs are clustered according to the estimated membership degrees. Furthermore, the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets (IVIFSs). Finally, the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets.

Related Articles | Metrics
Fault detection of switched linear systems with its application to turntable systems
Guanghui Sun, Mao Wang, Xiuming Yao, and Ligang Wu
Journal of Systems Engineering and Electronics    2011, 22 (1): 120-126.   DOI: 10.3969/j.issn.1004-4132.2011.01.015
Abstract951)      PDF(pc) (760KB)(891)       Save

This paper is concerned with the H∞ fault detection for continuous-time linear switched systems with its application to turntable systems. The solvability condition for a desired filter is established based on the proposed sufficient condition. Based on the double channel scheme of the turntable control system, the turntable system can be modeled as a switched system. Finally, by taking the turntable system as a numerical example, the effectiveness of the proposed theory is well validated.

Related Articles | Metrics
Scale effect removal and range migration correction for hypersonic target coherent detection
Shang WU, Zhi SUN, Xingtao JIANG, Haonan ZHANG, Jiangyun DENG, Xiaolong LI, Guolong CUI
Journal of Systems Engineering and Electronics    2024, 35 (1): 14-23.   DOI: 10.23919/JSEE.2023.000151
Abstract107)   HTML16)    PDF(pc) (2477KB)(82)       Save

The detection of hypersonic targets usually confronts range migration (RM) issue before coherent integration (CI). The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition. However, with the increasing requirement of far-range detection, the time bandwidth product, which is corresponding to radar’s mean power, should be promoted in actual application. Thus, the echo signal generates the scale effect (SE) at large time bandwidth product situation, influencing the intra and inter pulse integration performance. To eliminate SE and correct RM, this paper proposes an effective algorithm, i.e., scaled location rotation transform (ScLRT). The ScLRT can remove SE to obtain the matching pulse compression (PC) as well as correct RM to complete CI via the location rotation transform, being implemented by seeking the actual rotation angle. Compared to the traditional coherent detection algorithms, ScLRT can address the SE problem to achieve better detection/estimation capabilities. At last, this paper gives several simulations to assess the viability of ScLRT.

Table and Figures | Reference | Related Articles | Metrics
CBA: multi source fusion model for fast and intelligent target intention identification
Shichang WAN, Qingshan LI, Xuhua WANG, Nanhua LU
Journal of Systems Engineering and Electronics    2024, 35 (2): 406-416.   DOI: 10.23919/JSEE.2024.000023
Abstract7)   HTML4)    PDF(pc) (3296KB)(15)       Save

How to mine valuable information from massive multi-source heterogeneous data and identify the intention of aerial targets is a major research focus at present. Aiming at the long-term dependence of air target intention recognition, this paper deeply explores the potential attribute features from the spatiotemporal sequence data of the target. First, we build an intelligent dynamic intention recognition framework, including a series of specific processes such as data source, data preprocessing, target space-time, convolutional neural networks-bidirectional gated recurrent unit-atteneion (CBA) model and intention recognition. Then, we analyze and reason the designed CBA model in detail. Finally, through comparison and analysis with other recognition model experiments, our proposed method can effectively improve the accuracy of air target intention recognition, and is of significance to the commanders’ operational command and situation prediction.

Table and Figures | Reference | Related Articles | Metrics
Fuzzy sliding mode control guidance law with terminal impact angle and acceleration constraints
Qingchun Li, Wensheng Zhang, Gang Han, and Yuan Xie
Systems Engineering and Electronics    DOI: 10.1109/JSEE.2016.00070
Mission reliability modeling and evaluation for reconfigurable unmanned weapon system-of-systems based on effective operation loop
Zhiwei CHEN, Ziming ZHOU, Luogeng ZHANG, Chaowei CUI, Jilong ZHONG
Journal of Systems Engineering and Electronics    2023, 34 (3): 588-597.   DOI: 10.23919/JSEE.2023.000082
Abstract109)   HTML11)    PDF(pc) (1986KB)(180)       Save

The concept of unmanned weapon system-of-systems (UWSoS) involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission. The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission. However, issues with heterogeneity, cooperation between systems, and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods. This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration. First, we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints. Then, we propose an effective operation-loop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline. Moreover, a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration, revealing the evolution law of the effective operation loop and mission reliability. Finally, a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods. The mission reliability is achieved by considering external shocks, which can serve as a reference for evaluating and improving the effectiveness of UWSoS.

Table and Figures | Reference | Related Articles | Metrics
Short-time maritime target detection based on polarization scattering characteristics
Shichao CHEN, Feng LUO, Min TIAN, Wanghan LYU
Journal of Systems Engineering and Electronics    2024, 35 (1): 55-64.   DOI: 10.23919/JSEE.2023.000148
Abstract87)   HTML5)    PDF(pc) (4076KB)(52)       Save

In this paper, a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed. Firstly, the Cameron decomposition is exploited to fuse the radar echoes of full polarization channels at the data level. Due to the artificial material structure on the surface of the target, it can be shown that the non-reciprocity of the target cell is stronger than that of the clutter cell. Then, based on the analysis of the decomposition results, a new feature with scattering geometry characteristics in polarization domain, denoted as Cameron polarization decomposition scattering weight (CPD-SW), is extracted as the test statistic, which can achieve more detailed descriptions of the clutter scattering characteristics utilizing the difference between their scattering types. Finally, the superiority of the proposed CPD-SW detector over traditional detectors in improving detection performance is verified by the IPIX measured dataset, which has strong stability under short-time observation in threshold detection and can also improve the separability of feature space zin anomaly detection.

Table and Figures | Reference | Related Articles | Metrics
A target parameter estimation method via atom-reconstruction in radar mainlobe jamming
Bilei ZHOU, Weijian LIU, Rongfeng LI, Hui CHEN, Liang ZHANG, Qinglei DU, Binbin LI, Hao CHEN
Journal of Systems Engineering and Electronics    2024, 35 (2): 350-360.   DOI: 10.23919/JSEE.2024.000001
Abstract7)   HTML3)    PDF(pc) (11728KB)(13)       Save

Mainlobe jamming (MLJ) brings a big challenge for radar target detection, tracking, and identification. The suppression of MLJ is a hard task and an open problem in the electronic counter-counter measures (ECCM) field. Target parameters and target direction estimation is difficult in radar MLJ. A target parameter estimation method via atom-reconstruction in radar MLJ is proposed in this paper. The proposed method can suppress the MLJ and simultaneously provide high estimation accuracy of target range and angle. Precisely, the eigen-projection matrix processing (EMP) algorithm is adopted to suppress the MLJ, and the target range is estimated effectively through the beamforming and pulse compression. Then the target angle can be effectively estimated by the atom-reconstruction method. Without any prior knowledge, the MLJ can be canceled, and the angle estimation accuracy is well preserved. Furthermore, the proposed method does not have strict requirement for radar array construction, and it can be applied for linear array and planar array. Moreover, the proposed method can effectively estimate the target azimuth and elevation simultaneously when the target azimuth (or elevation) equals to the jamming azimuth (or elevation), because the MLJ is suppressed in spatial plane dimension.

Table and Figures | Reference | Related Articles | Metrics
Adaptive admittance tracking control for interactive robot with prescribed performance
Qingrui MENG, Yan LIN
Journal of Systems Engineering and Electronics    2024, 35 (2): 444-450.   DOI: 10.23919/JSEE.2024.000038
Abstract5)   HTML3)    PDF(pc) (3728KB)(13)       Save

An adaptive control approach is presented in this paper for tracking desired trajectories in interactive manipulators. The controller design incorporates prescribed performance functions (PPFs) to improve dynamic performance. Notably, the performance of the output error is confined in an envelope characterized by exponential convergence, leading to convergence to zero. This feature ensures a prompt response from admittance control and establishes a reliable safety framework for interactions. Simulation results provide practical insights, demonstrating the viability of the control scheme proposed in this paper.

Table and Figures | Reference | Related Articles | Metrics
Identity-aware convolutional neural networks for facial expression recognition
Chongsheng Zhang, Pengyou Wang, Ke Chen, and Joni-Kristian K¨am¨ ar¨ainen
Systems Engineering and Electronics    DOI: 10.21629/JSEE.2017.04.18
A workload-based nonlinear approach for predicting available computing resources
Yunfei JIA, Zhiquan ZHOU, Renbiao WU
Journal of Systems Engineering and Electronics    2020, 31 (1): 224-230.   DOI: 10.21629/JSEE.2020.01.21
Abstract312)   HTML2)    PDF(pc) (4060KB)(224)       Save

Performance degradation or system resource exhaustion can be attributed to inadequate computing resources as a result of software aging. In the real world, the workload of a web server varies with time, which will cause a nonlinear aging phenomenon. The nonlinear property often makes analysis and modelling difficult. Workload is one of the important factors influencing the speed of aging. This paper quantitatively analyzes the workload-aging relation and proposes a framework for aging control under varying workloads. In addition, this paper proposes an approach that employs prior information of workloads to accurately forecast incoming system exhaustion. The workload data are used as a threshold to divide the system resource usage data into multiple sections, while in each section the workload data can be treated as a constant. Each section is described by an individual autoregression (AR) model. Compared with other AR models, the proposed approach can forecast the aging process with a higher accuracy.

Table and Figures | Reference | Related Articles | Metrics
A learning-based flexible autonomous motion control method for UAV in dynamic unknown environments
Kaifang WAN, Bo LI, Xiaoguang GAO, Zijian HU, Zhipeng YANG
Journal of Systems Engineering and Electronics    2021, 32 (6): 1490-1508.   DOI: 10.23919/JSEE.2021.000126
Abstract89)   HTML1)    PDF(pc) (5940KB)(318)       Save

This paper presents a deep reinforcement learning (DRL)-based motion control method to provide unmanned aerial vehicles (UAVs) with additional flexibility while flying across dynamic unknown environments autonomously. This method is applicable in both military and civilian fields such as penetration and rescue. The autonomous motion control problem is addressed through motion planning, action interpretation, trajectory tracking, and vehicle movement within the DRL framework. Novel DRL algorithms are presented by combining two difference-amplifying approaches with traditional DRL methods and are used for solving the motion planning problem. An improved Lyapunov guidance vector field (LGVF) method is used to handle the trajectory-tracking problem and provide guidance control commands for the UAV. In contrast to conventional motion-control approaches, the proposed methods directly map the sensor-based detections and measurements into control signals for the inner loop of the UAV, i.e., an end-to-end control. The training experiment results show that the novel DRL algorithms provide more than a 20% performance improvement over the state-of-the-art DRL algorithms. The testing experiment results demonstrate that the controller based on the novel DRL and LGVF, which is only trained once in a static environment, enables the UAV to fly autonomously in various dynamic unknown environments. Thus, the proposed technique provides strong flexibility for the controller.

Table and Figures | Reference | Related Articles | Metrics
Feasibility of a novel beamforming algorithm via retrieving spatial harmonics
Jafar NOROLAHI, Paeiz AZMI, Mahdi NASIRIAN
Journal of Systems Engineering and Electronics    2022, 33 (1): 38-46.   DOI: 10.23919/JSEE.2022.000005
Abstract214)   HTML18)    PDF(pc) (4657KB)(248)       Save

This paper introduces an algorithm for beamforming systems by the aid of multidimensional harmonic retrieval (MHR). This algorithm resolves problems, removes limitations of sampling and provides a more robust beamformer. A new sample space is created that can be used for estimating weights of a new beamforming called spatial-harmonics retrieval beamformer (SHRB). Simulation results show that SHRB has a better performance, accuracy, and applicability and more powerful eigenvalues than conventional beamformers. A simple mathematical proof is provided. By changing the number of harmonics, as a degree of freedom that is missing in conventional beamformers, SHRB can achieve more optimal outputs without increasing the number of spatial or temporal samples. We will demonstrate that SHRB offers an improvement of 4 dB in signal to noise ratio (SNR) in bit error rate (BER) of $ {10}^{-4} $ over conventional beamformers. In the case of direction of arrival (DOA) estimation, SHRB can estimate the DOA of the desired signal with an SNR of ?25 dB, when conventional methods cannot have acceptable response.

Table and Figures | Reference | Related Articles | Metrics
GNSS array receiver faced with overloaded interferences: anti-jamming performance and the incident directions of interferences
Jie WANG, Wenxiang LIU, Feiqiang CHEN, Zukun LU, Gang OU
Journal of Systems Engineering and Electronics    2023, 34 (2): 335-341.   DOI: 10.23919/JSEE.2022.000072
Abstract77)   HTML4)    PDF(pc) (6101KB)(105)       Save

Anti-jamming solutions based on antenna arrays enhance the anti-jamming ability and the robustness of global navigation satellite system (GNSS) receiver remarkably. However, the performance of the receiver will deteriorate significantly in the overloaded interferences scenario. We define the overloaded interferences scenario as where the number of interferences is more than or equal to the number of antenna arrays elements. In this paper, the effect mechanism of interferences with different incident directions is found by studying the anti-jamming performance of the adaptive space filter. The theoretical analysis and conclusions, which are first validated through numerical examples, reveal the relationships between the optimal weight vector and the eigenvectors of the input signal autocorrelation matrix, the relationships between the interference cancellation ratio (ICR), the signal to interference and noise power ratio (SINR) of the adaptive space filter output and the number of interferences, the eigenvalues of the input signal autocorrelation matrix. In addition, two simulation experiments are utilized to further corroborate the theoretical findings through soft anti-jamming receiver. The simulation results match well with the theoretical analysis results, thus validating the effect mechanism of overloaded interferences. The simulation results show that, for a four elements circular array, the performance difference is up to 19 dB with different incident directions of interferences. Anti-jamming performance evaluation and jamming deployment optimization can obtain more accurate and efficient results by using the conclusions.

Table and Figures | Reference | Related Articles | Metrics
CONTENTS
Journal of Systems Engineering and Electronics    2024, 35 (1): 0-.  
Abstract57)      PDF(pc) (111KB)(38)       Save
Related Articles | Metrics
Influence of B1 code correlation loop for vector tracking structures under complicated environment
Qian WANG, Feng SHANG, Liming DU, Wenjia ZHOU
Journal of Systems Engineering and Electronics    2019, 30 (6): 1053-1063.   DOI: 10.21629/JSEE.2019.06.01
Abstract799)   HTML13)    PDF(pc) (1230KB)(393)       Save

The code tracking loop is a key component for user positioning. The pseudorange information of BeiDou B1 signals has been fused and changed for vector tracking, so a correlation output model for complex scenarios is designed to prevent the propagation of error and valuate the signal performance. The relevant software and hardware factors that affect the output are analyzed. A single channel time-division multiplexing (TDM) method for multicorrelation data extraction is proposed. Statistical characteristics of the correlation output data for both vector and scalar structures are evaluated. Simulation results show that correlation outputs for both structures follow normal or Chi-squared distributions in normal conditions, and the Gamma distribution in harsh conditions. It is shown that a tracking model based on the multi-channel fusion hardly changes the probability distribution of the correlation output in the normal case, but it reduces the ranging error of the code loop, and hence the tracking ability of the code loop for weak signals is improved. Furthermore, vector tracking changes the pseudorange characteristics of channels anytime, and affects the mutual correlation outputs of the code loops in the abnormal case. This study provides a basis for the subsequent design of autonomous integrity algorithms for vector tracking.

Table and Figures | Reference | Related Articles | Metrics
A simplified decoding algorithm for multi-CRC polar codes
Haifen YANG, Suxin YAN, Hao ZHANG, Yan REN, Xiangdong HU, Shuisheng LIN
Journal of Systems Engineering and Electronics    2020, 31 (1): 12-18.   DOI: 10.21629/JSEE.2020.01.02
Abstract371)   HTML6)    PDF(pc) (499KB)(474)       Save

Polar codes represent one of the major breakthroughs in 5G standard, and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list (SCL) decoding algorithm. However, the SCL algorithm suffers from a large amount of memory overhead. This paper proposes an adaptive simplified decoding algorithm for multiple cyclic redundancy check (CRC) polar codes. Simulation results show that the proposed method can reduce the decoding complexity and memory space. It can also acquire the performance gain in the low signal to noise ratio region.

Table and Figures | Reference | Related Articles | Metrics
An executable modeling and analyzing approach to C4ISR architecture
Hongyue HE, Weixing ZHU, Ruiyang LI, Qiaoyu DENG
Journal of Systems Engineering and Electronics    2020, 31 (1): 109-117.   DOI: 10.21629/JSEE.2020.01.12
Abstract411)   HTML3)    PDF(pc) (430KB)(231)       Save

To analyze the behavioral model of the command, control, communication, computer, intelligence, surveillance, reconnaissance (C4ISR) architecture, we propose an executable modeling and analyzing approach to it. First, the meta concept model of the C4ISR architecture is introduced. According to the meta concept model, we construct the executable meta models of the C4ISR architecture by extending the meta models of fUML. Then, we define the concrete syntax and executable activity algebra (EAA) semantics for executable models. The semantics functions are introduced to translating the syntax description of executable models into the item of EAA. To support the execution of models, we propose the executable rules which are the structural operational semantics of EAA. Finally, an area air defense of the C4ISR system is used to illustrate the feasibility of the approach.

Table and Figures | Reference | Related Articles | Metrics