Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (6): 1110-1118.doi: 10.21629/JSEE.2019.06.07
• Defence Electronics Technology • Previous Articles Next Articles
Jiayun CHANG(), Xiongjun FU*(), Wen JIANG(), Min XIE()
Received:
2019-01-24
Online:
2019-12-20
Published:
2019-12-25
Contact:
Xiongjun FU
E-mail:824400828@qq.com;fuxiongjun@bit.edu.cn;jwen912@126.com;xiemin@bit.edu.cn
About author:
CHANG Jiayun was born in 1989. She received her master degree from Beijing Institute of Technology (BIT), China, in 2016. Currently, she is pursuing her Ph.D. degree in the School of Information and Electronics, BIT. Her research interests include automatic target recognition and radar signal processing. E-mail: Supported by:
Jiayun CHANG, Xiongjun FU, Wen JIANG, Min XIE. Design of high-performance energy integrator detector for wideband radar[J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1110-1118.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Simulation parameters"
Parameter | Value | |
Noise power/dBW | — | 40 |
Radar parameters | Signal amplitude/V | 1 |
Bandwidth/MHz | 500 | |
Pulse duration/ | 10 | |
Carrier frequency/GHz | 10 | |
Pulse repetition frequency/Hz | 200 | |
Target parameters | Initial range to radar/m | 5 000 |
Radial velocity/(m/s) | 0 | |
Target reality radial length/m | 30 | |
Scattering point parameters: | ||
Number | 10 | |
Distribution location | 0.01, 0.1, 0.15, 0.3, 0.31, 0.7, 0.71, 0.72, 0.9, 0.91 | |
Amplitude/V | 20, 30, 30, 30, 20, 20, 20, 50, 40, 20 | |
Tracking gate parameters | Width/ | 30.2 |
Starting time/ | 28.33 | |
Ending time/ | 58.53 |
1 |
ROBEY F C, FUHNNANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector. IEEE Trans. on Aerospace and Electronic Systems, 1992, 28 (1): 208- 216.
doi: 10.1109/7.135446 |
2 | KELLY E J. An adaptive detection algorithm. IEEE Trans. on Aerospace and Electronic Systems, 1986, 22 (2): 115- 127. |
3 | FARINA A, SCANNAPIECO F, VINELLI F. Target detection and classification with very high range resolution radar. Proc. of the International Conference on Radar, 1989, 20- 25. |
4 | FARINA A, SCANNAPIECO F, VINELLI F. Target detection and classification with polarimetric high resolution range radar. BOERNER W M, ed. Direct and inverse methods in radar polarimetry, Part Ⅰ. Netherlands: Kluwer Academic Publishers, 1989: 1021-1041. |
5 |
MOON T T, BAWDEN P J. High resolution RCS measurements of boats. IEE Proceedings F-Radar Signal Processing, 1991, 138 (3): 218- 222.
doi: 10.1049/ip-f-2.1991.0028 |
6 |
YANG X L, WEN G J, MA C H, et al. CFAR detection of moving range-spread target in white Gaussian noise using waveform contrast. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (2): 282- 286.
doi: 10.1109/LGRS.2015.2511060 |
7 |
BERIZZI F, MARTORELLA A, CAPRIA A, et al. A contrast based algorithm for synthetic range-profile motion compensation. IEEE Trans. on Geoscience and Remote Sensing, 2008, 46 (10): 3053- 3062.
doi: 10.1109/TGRS.2008.2002576 |
8 |
ZHANG S X, XING M D, XIA X G, et al. Robust clutter suppression and moving target imaging approach for multichannel in azimuth high-resolution and wide-swath synthetic aperture radar. IEEE Trans. on Geoscience and Remote Sensing, 2015, 53 (2): 687- 709.
doi: 10.1109/TGRS.2014.2327031 |
9 |
MARTORELLA M, BERIZZI F, HAYWOOD B. A contrast maximization based technique for 2D ISAR autofocusing. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152 (4): 253- 262.
doi: 10.1049/ip-rsn:20045123 |
10 |
JIAN T, HE Y, SU F, et al. Robust detector for range-spread targets in non-Gaussian background. Journal of Systems Engineering and Electronics, 2012, 23 (3): 355- 363.
doi: 10.1109/JSEE.2012.00044 |
11 |
SEKINE H. Weibull, log-Weibull and K-distributed ground clutter modeling analyzed by AIC. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37 (3): 1108- 1113.
doi: 10.1109/7.953262 |
12 |
DE MAIO A, ORLANDO D. Adaptive radar detection of a subspace signal embedded in subspace structured plus Gaussian interference via invariance. IEEE Trans. on Signal Processing, 2016, 64 (8): 2156- 2167.
doi: 10.1109/TSP.2015.2507544 |
13 |
CIUONZO D, MAIO A D, ORLANDO D. On the statistical invariance for adaptive radar detection in partially homogeneous disturbance plus structured interference. IEEE Trans. on Signal Processing, 2017, 65 (5): 1222- 1234.
doi: 10.1109/TSP.2016.2620115 |
14 |
CONTE E, DE MAIO A, RICCI G. GLRT-based adaptive detection algorithms for range-spread targets. IEEE Trans. on Signal Processing, 2001, 49 (7): 1336- 1348.
doi: 10.1109/78.928688 |
15 |
XIAO L, LIU Y, HUANG T, et al. Distributed target detection with partial observation. IEEE Trans. on Signal Processing, 2018, 66 (6): 1551- 1565.
doi: 10.1109/TSP.2018.2791926 |
16 |
WU D, ZHU D, SHEN M W, et al. Statistical analysis of monopulse-synthetic aperture radar for constant false-alarm rate detection of ground moving targets. IET Radar, Sonar and Navigation, 2015, 9 (6): 641- 652.
doi: 10.1049/iet-rsn.2014.0246 |
17 |
LIU W, LIU J, HUANG L, et al. Distributed target detectors with capabilities of mismatched subspace signal rejection. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (2): 888- 900.
doi: 10.1109/TAES.2017.2667141 |
18 |
LIU W, LIU J, DU Q, et al. Distributed target detection in partially homogeneous environment when signal mismatch occurs. IEEE Trans. on Signal Processing, 2018, 66 (14): 3918- 3928.
doi: 10.1109/TSP.2018.2841860 |
19 |
GAO Y, LI H, HIMED B. Knowledge-aided range-spread target detection for distributed MIMO radar in nonhomogeneous environments. IEEE Trans. on Signal Processing, 2017, 65 (3): 617- 627.
doi: 10.1109/TSP.2016.2625266 |
20 |
ZHANG X W, LI M, ZUO L, et al. Adaptive subspace detection for wideband radar using sparsity in sinc basis. IEEE Trans. on Geoscience and Remote Sensing, 2014, 11 (11): 1916- 1920.
doi: 10.1109/LGRS.2014.2313881 |
21 |
MARTORELLA M, BERIZZI F, HAYWOOD B. A contrast maximization based technique for 2D ISAR autofocusing. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152 (4): 253- 262.
doi: 10.1049/ip-rsn:20045123 |
22 |
MAIO A D, CONTE E. Adaptive detection in Gaussian interference with unknown covariance after reduction by invariance. IEEE Trans. on Signal Processing, 2010, 58 (6): 2925- 2934.
doi: 10.1109/TSP.2010.2044835 |
23 |
LI N, CUI G, KONG L, et al. Moving target detection for polarimetric multiple-input multiple-output radar in Gaussian clutter. IET Radar, Sonar and Navigation, 2015, 9 (3): 285- 298.
doi: 10.1049/iet-rsn.2014.0157 |
24 |
CHEN P, ZHENG L, WANG X D. Moving target detection using colocated MIMO radar on multiple distributed moving platforms. IEEE Trans. on Signal Processing, 2017, 65 (17): 4670- 4683.
doi: 10.1109/TSP.2017.2714999 |
25 |
CUI G L, YU X X, KONG L J. Exact distribution for the product of two correlated Gaussian random variables. IEEE Signal Processing Letters, 2016, 23 (11): 1662- 1666.
doi: 10.1109/LSP.2016.2614539 |
26 |
CAROTENUTO V, MAIO A D, ORLANDO D, et al. Adaptive radar detection using two sets of training data. IEEE Trans. on Signal Processing, 2018, 66 (7): 1791- 1801.
doi: 10.1109/TSP.2017.2778684 |
27 |
AUBRY A, MAIO A D, PALLOTTA L, et al. Radar detection of distributed targets in homogeneous interference whose inverse covariance structure is defined via unitary invariant functions. IEEE Trans. on Signal Processing, 2013, 61 (20): 4949- 4961.
doi: 10.1109/TSP.2013.2273444 |
28 |
BUDILLON A, SCHIRINZI G. Performance evaluation of a GLRT moving target detector for TerraSAR-X along-track interferometric data. IEEE Trans. on Geoscience and Remote Sensing, 2015, 53 (6): 3350- 3360.
doi: 10.1109/TGRS.2014.2374422 |
29 |
HAO C, YANG J, MA X, et al. Adaptive detection of distributed targets with orthogonal rejection. IET Radar, Sonar and Navigation, 2012, 6 (6): 483- 493.
doi: 10.1049/iet-rsn.2011.0234 |
30 |
CONTE E, MAIO D A, RICCI A, et al. CFAR detection of distributed targets in non-Gaussian distribution. IEEE Trans. on Aerospace and Electronic Systems, 2002, 38 (2): 612- 621.
doi: 10.1109/TAES.2002.1008990 |
31 |
CIUONZO D, ORLANDO D, PALLOTTA L. On the maximal invariant statistic for adaptive radar detection in partially homogeneous disturbance with persymmetric covariance. IEEE Trans. on Signal Processing, 2016, 23 (12): 1830- 1834.
doi: 10.1109/LSP.2016.2618619 |
32 |
CIUONZO D, MAIO A D, ORLANDO D. On the statistical invariance for adaptive radar detection in partially homogeneous disturbance plus structured interference. IEEE Trans. on Signal Processing, 2017, 65 (5): 1222- 1234.
doi: 10.1109/TSP.2016.2620115 |
33 |
DONG Y, LIU M, LI K. Adaptive direction detection in deterministic interference and partially homogeneous noise. IEEE Signal Processing letters, 2017, 24 (5): 599- 603.
doi: 10.1109/LSP.2017.2683198 |
34 |
ABRAMOVICH Y I, BESSON O. Fluctuating target detection in fluctuating K-distributed clutter. IEEE Signal Processing Letters, 2015, 22 (10): 1791- 1795.
doi: 10.1109/LSP.2015.2436972 |
35 |
YANG X L, WEN G J, MA C H, et al. CFAR detection of moving range-spread target in white Gaussian noise using waveform contrast. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (2): 282- 286.
doi: 10.1109/LGRS.2015.2511060 |
36 |
SANGSTON K J, GINI F, GRECO M S. Coherent radar target detection in heavy-tailed compound-Gaussian clutter. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (1): 64- 77.
doi: 10.1109/TAES.2012.6129621 |
[1] | Jinfang WEN, Jianxin YI, Xianrong WAN, Ziping GONG, Ji SHEN. DOA estimation based on multi-frequency joint sparse Bayesian learning for passive radar [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1052-1063. |
[2] | Wenge XING, Chuanrui ZHOU, Chunlei WANG. Modified OMP method for multi-target parameter estimation in frequency-agile distributed MIMO radar [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1089-1094. |
[3] | Zongling LI, Qingjun ZHANG, Teng LONG, Baojun ZHAO. A parallel pipeline connected-component labeling method for on-orbit space target monitoring [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1095-1107. |
[4] | Hao FENG, Jianzhong WU, Lu ZHANG, Mingsheng LIAO. Unsupervised change detection of man-made objects using coherent and incoherent features of multi-temporal SAR images [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 896-906. |
[5] | Weiming TIAN, Lin DU, Yunkai DENG, Xichao DONG. Partition of GB-InSAR deformation map based on dynamic time warping and k-means [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 907-915. |
[6] | Xiaoli WU, Wentao WEI, Sabrina CALDWELL, Chengqi XUE, Linlin WANG. Optimization method for a radar situation interface from error-cognition to information feature mapping [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 924-937. |
[7] | Tianjie LEI, Jiabao WANG, Pingping HUANG, Weixian TAN, Yaolong QI, Wei XU, Chun ZHAO. Time-varying baseline error correction method for ground-based micro-deformation monitoring radar [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 938-950. |
[8] | Yuanshi ZHANG, Minghai PAN, Weijun LONG, Hua LI, Qinghua HAN. Joint waveform selection and power allocation algorithm in manned/unmanned aerial vehicle hybrid swarm based on chance-constraint programming [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 551-562. |
[9] | Bingren JI, Yong WANG, Bin ZHAO, Rongqing XU. Multi-static InISAR imaging for ships under sparse aperture [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 575-584. |
[10] | Deping XIA, Liang ZHANG, Tao WU, Wenjun HU. An interference suppression algorithm for cognitive bistatic airborne radars [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 585-593. |
[11] | Jing GUI, Heming ZHAO, Xiang XU. Heading constraint algorithm for foot-mounted PNS using low-cost IMU [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 727-736. |
[12] | Liangliang WANG, Gongjian ZHOU. Multiframe track-before-detect method based on velocity filtering in mixed coordinates [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 247-258. |
[13] | Jun HAN, Weixing LI, Kai FENG, Feng PAN. Vision-based aerial image mosaicking algorithm with object detection [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 259-268. |
[14] | Margarita ORESHKINA, Maksim STEPANOV, Alexey KISELEV. Digital Earth surface maps for radar ground clutter simulation [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 340-344. |
[15] | Zhuxian ZHANG, Yu ZHENG, Linhua ZHENG, Peidong ZHU. Range resolution and sampling frequency trade-off for GPS passive radar [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 28-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||