Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (5): 1200-1211.doi: 10.23919/JSEE.2021.000102
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Yaru ZHENG(), Qinglong LI(), Ming XU*(), Yunfeng DONG()
Received:
2020-08-08
Online:
2021-10-18
Published:
2021-11-04
Contact:
Ming XU
E-mail:zheng_yaru@outlook.com;liqnlong@buaa.edu.cn;xuming@buaa.edu.cn;sinosat@buaa.edu.cn
About author:
Supported by:
Yaru ZHENG, Qinglong LI, Ming XU, Yunfeng DONG. An integrated simulation system for operating solar sail spacecraft[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1200-1211.
Table 1
Nomenclature"
Variable | Definition | Unit | Variable | Definition | Unit | |
a | Semi-major axis | m | Kp2, Kd2 | Pitching control coefficient | ? | |
A | Exponential voltage | V | Kp3, Kd3 | Yawing control coefficient | ? | |
As-p, FS | Area parameters | m2 | R, Rm | Resistance | Ω | |
B | Exponential capacity | Ah-1 | R, R1, R2 | Position vector | m | |
Cm | Capacitance | C | S | Solar direction vector | m | |
CS, CN | Hear capacity of nodes | J/K | SOC, SOC0 | State of charge | ? | |
e | Eccentricity | ? | T | Control torque | N·m | |
hNS, εNS | Thermal coefficient | ? | Ti | Internal node temperature | °C | |
i | Orbit inclination | (°) | To | External node temperature | °C | |
I,Impr, Iscr | Electric current | A | U, Um0, Umpr, Uocr | Busbar voltage | V | |
M | Mean anomaly | (°) | V, V1, V2 | Velocity vector | m/s | |
ng | Power supply array coefficient | ? | ω | Angular velocity | rad/s | |
nc | Power charging array coefficient | ? | Ω | Right ascension of the ascending node (RAAN) | (°) | |
Q | Rated capacity | Ah | φ, θ, ψ | Rotation angle | (°) | |
K | Polarization voltage | V | | Surface coefficient | ? | |
Kp1, Kd1 | Rolling control coefficient | ? |
Table 3
Parameters of the power system"
Parameter | Value | |
Initial power system | Um0/V | 50 |
SOC0/% | 78 | |
Parameters of solar cell | Impr/A | 0.2348 |
Iscr/A | 0.2480 | |
Vmpr/V | 0.8802 | |
Vocr/V | 1.0180 | |
Parameters of single solar cell array | np | 10 |
ns | 52 | |
R/Ω | 1.6 | |
Parameters of the accumulator | K | 0.3135 |
Q/Ah | 70 | |
A/V | 1.98962 | |
B/Ah?1 | 0.193 16 | |
Ri/Ω | 0.036 | |
Power supply array/Charging | ng | 6 |
nc | 4 | |
Parameters of the bus bar | Cm/C | 1.099 |
Rm/Ω | 1000 |
Table 4
Parameters of the thermal control system"
Parameter | Value | |
Initial temperature of the nodes | TS0/°C | 12 |
TN0/°C | 12 | |
Area parameters | FS/m2 | 31 |
As-p/m2 | 7.45 | |
Surface parameters | | 0.44 |
| 0.42 | |
Hear capacity of the nodes | CS/(J/K) | 30000 |
CN/(J/K) | 20000 | |
Thermal parameters | hNS | 0.105 |
εNS | 0.105×10?6 | |
Other parameters | Fh-s | 0.5 |
QN/W | 26.5 |
1 | MACNEAL R H. Structural dynamics of the Heliogyro. Washington, D.C.: NASA-CR-1745A, 1971. |
2 | BADESCUV, CATHCART R B, SCHUILING R D. Water science and technology library. Dordrecht: Springer, 2006. |
3 | TSUDA Y, MORI O, TAKEUCHI S, et al Flight results and analysis of solar sail deployment experiment using S-310 sounding rocket. Space Technology, 2006, 26, 33- 39. |
4 |
FREELAND R E, BILYEU G D, VEAL G R, et al Large inflatable deployable antenna flight experiment results. Acta Astronautica, 1997, 41 (4−10): 267- 277.
doi: 10.1016/S0094-5765(98)00057-5 |
5 | LEIPOLD M, EIDEN M, GARNER C E, et al Solar sail technology development and demonstration. Acta Astronautica, 2000, 52 (2−6): 317- 326. |
6 |
GASPAR J L, JONES T W, MURPHY D M Solar sail structural characterization test program. Journal of Spacecraft and Rockets, 2007, 44 (4): 765- 783.
doi: 10.2514/1.22897 |
7 |
TSUDA Y, MORI O, FUNASE R, et al Achievement of IKAROS Japanese deep space solar sail demonstration. Acta Astronautica, 2013, 82 (2): 183- 188.
doi: 10.1016/j.actaastro.2012.03.032 |
8 |
JOHNSON L, WHORTON M, HEATON A, et al NanoSail-D: a solar sail demonstration mission. Acta Astronautica, 2011, 68 (5/6): 571- 575.
doi: 10.1016/j.actaastro.2010.02.008 |
9 |
LIU S Y, DOUGAL R A Dynamic multiphysics model for solar array. IEEE Trans. on Energy Conversion, 2002, 17 (2): 285- 294.
doi: 10.1109/TEC.2002.1009482 |
10 | BAILEY P, LOVGREN J Power sizing and power performance simulation tools for general EPS mission analyses. Proc. of the 32nd Intersociety Energy Conversion Engineering Conference, 1997, 7, 262- 267. |
11 |
ALHAMA F, CAMPO A Network simulation of the rapid temperature changes in the composite nozzle wall of an experimental rocket engine during a ground firing test. Applied Thermal Engineering, 2003, 23 (1): 37- 47.
doi: 10.1016/S1359-4311(02)00090-X |
12 |
GARMENDIA I, ANGLADA E Thermal mathematical model correlation through genetic algorithms of an experiment conducted on board the International Space Station. Acta Astronautica, 2016, 122, 63- 75.
doi: 10.1016/j.actaastro.2016.01.022 |
13 | LI Q Y Simulation method for satellite thermal control system based on double-layer aggregate model. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40 (1): 37- 40. |
14 | MICHAEL P, PRADEEP B, PAUL G, et al. Spacecraft attitude and orbit control. New Jersey: Princeton Satellite Systems, 2009. |
15 |
SUN Z W, XU G D, LIN X B, et al The integrated system for design, analysis, system simulation and evaluation of the small satellite. Advances in Engineering Software, 2000, 31 (7): 437- 443.
doi: 10.1016/S0965-9978(00)00055-7 |
16 |
SAKAMOTO H, MIYAZAKI Y, PARKT K C Finite element modeling of sail deformation under solar radiation pressure. Journal of Spacecraft and Rockets, 2007, 44 (3): 514- 521.
doi: 10.2514/1.23474 |
17 | GORBUNOVA I, KHABIBULLIN R, CHERNYAKIN S, et al. The finite-element behavior simulation of the rotary-type and frame-type solar sails on the geocentric orbits. Proc. of the International Conference on Mechanical Engineering, Automation and Control Systems, 2016: 124. |
18 |
JILLA C D, MILLER D W Multi-objective, multidisciplinary design optimization methodology for distributed satellite systems. Journal of Spacecraft and Rockets, 2004, 41 (1): 39- 50.
doi: 10.2514/1.9206 |
19 |
LUO T, XU M, QU Q Y Design concept for a solar sail with individually controllable elements. Journal of Spacecraft and Rockets, 2017, 54 (6): 1390- 1398.
doi: 10.2514/1.A33775 |
20 |
GRIMM V, BERGER U A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 2006, 198 (1/2): 115- 126.
doi: 10.1016/j.ecolmodel.2006.04.023 |
21 |
CAMPBELL M, SCHETTER T Comparison of multiple agent-based organizations for satellite constellations. Journal of Spacecraft and Rockets, 2002, 39 (2): 274- 283.
doi: 10.2514/2.3809 |
22 |
ZHANG J, WANG T S Coupled attitude-orbit control of flexible solar sail for displaced solar orbit. Journal of Spacecraft and Rockets, 2013, 50 (3): 675- 685.
doi: 10.2514/1.A32369 |
23 | HOWARD D. Orbital mechanics for engineering students. Butterworth-Heinemann: Elsevier, 2013. |
24 | JIA X H, XU M, LUO J Umbra prediction algorithms for LEO satellite. Journal of Astronautics, 2016, 37 (1): 39- 47. |
25 |
KIM J H, KIM B Study on the reduction method of the satellite thermal mathematical model. Advances in Engineering Software, 2017, 108, 37- 47.
doi: 10.1016/j.advengsoft.2017.02.007 |
26 | GILMORE D. Spacecraft thermal control handbook. California: The Aerospace Corporation Press, 2002. |
27 |
HANAA T, FATEN H, NINET M Spacecraft power system controller based on neural network. Acta Astronautica, 2011, 69 (7/8): 650- 657.
doi: 10.1016/j.actaastro.2011.05.028 |
28 | LUO T, YAO C, XU M, et al. Attitude dynamics and control for a solar sail with individually controllable elements. Journal of Guidance, Control, and Dynamics, 2019. DOI: 10.2514/1.G003957. |
[1] | Ang GAO, Qisheng GUO, Zhiming DONG, Zaijiang TANG, Ziwei ZHANG, Qiqi FENG. Research on virtual entity decision model for LVC tactical confrontation of army units [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1249-1267. |
[2] | Wenzhang LIU, Lu DONG, Jian LIU, Changyin SUN. Knowledge transfer in multi-agent reinforcement learning with incremental number of agents [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 447-460. |
[3] | Zheng WANG, Zhiyuan HU, Xuanfang YANG. Multi-agent and ant colony optimization for ship integrated power system network reconfiguration [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 489-496. |
[4] | Sader MALIKA, Fuyong WANG, Zhongxin LIU, Zengqiang CHEN. Distributed fuzzy fault-tolerant consensus of leader-follower multi-agent systems with mismatched uncertainties [J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1031-1040. |
[5] | Duo QI, Junhua HU, Xiaolong LIANG, Jiaqiang ZHANG, Zhihao ZHANG. Research on consensus of multi-agent systems with and without input saturation constraints [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 947-955. |
[6] | Ye MA, Tianqing CHANG, Wenhui FAN. A single-task and multi-decision evolutionary game model based on multi-agent reinforcement learning [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 642-657. |
[7] |
Bingqiang LI, Tianyi LAN, Yiyun ZHAO, Shuaishuai LYU.
Open-loop and closed-loop |
[8] | Xia WU, Yan LI, Yongjian SUN, Alei CHEN, Jianwen CHEN, Jianchao MA, Hao CHEN. Investigation of MAS structure and intelligent+ information processing mechanism of hypersonic target detection and recognition system [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1105-1115. |
[9] | Jie ZHANG, Gang WANG, Shaohua YUE, Yafei SONG, Jiayi LIU, Xiaoqiang YAO. Multi-agent system application in accordance with game theory in bi-directional coordination network model [J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 279-289. |
[10] | Weiwei WU, Qian MA, Yexin LIU, Yongjun KIM. A model for knowledge transfer in a multi-agent organization based on lattice kinetic model [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 156-167. |
[11] | Ruiwen ZHANG, Bifeng SONG, Yang PEI, Qijia YUN. Improved method for subsystems performance trade-off in system-of-systems oriented design of UAV swarms [J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 720-737. |
[12] | Dariush TAVAKOLIFAR, Hamid KHALOOZADEH, Roya AMJADIFARD. Stabilization of switched systems with all unstable modes: application to the aircraft team problem [J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 792-798. |
[13] | Bo ZHUANG, Baotong CUI, Wei WU, Zhengxian JIANG. Coverage-optimization based guidance of mobile agents for improved control of distributed parameter systems [J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 601-612. |
[14] | Qiang MAI, Yueqiang ZHAO, Shi AN. Discrete decision model and multi-agent simulation of the Liang Zong two-chain hierarchical organization in a complex project [J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 311-320. |
[15] | Xiaolei Li, Xiaoyuan Luo, Shaobao Li, Jianjin Li, and Xinping Guan. Consensus of second-order nonlinear multi-agent systems via sliding mode observer and controller [J]. Systems Engineering and Electronics, 2017, 28(4): 756-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||