Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (1): 65-73.doi: 10.23919/JSEE.2023.000072
• ELECTRONICS TECHNOLOGY • Previous Articles
Yi WEN1,2,*(), Junxiang WANG2(), Hongbing XU1()
Received:
2022-12-02
Accepted:
2023-05-18
Online:
2024-02-18
Published:
2024-03-05
Contact:
Yi WEN
E-mail:luciswen@163.com;wangjunxiang87928@126.com;hbxu@uestc.edu.cn
About author:
Yi WEN, Junxiang WANG, Hongbing XU. Unconditionally stable Crank-Nicolson algorithm with enhanced absorption for rotationally symmetric multi-scale problems in anisotropic magnetized plasma[J]. Journal of Systems Engineering and Electronics, 2024, 35(1): 65-73.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
9 | TAFLOVE A, HAGNESS S C. Computational electrodynamics: the finite-difference time-domain method. Norwood: Artech House, 2005. |
10 |
NAMIKI T 3-D ADI-FDTD method unconditionally stable time domain algorithm for solving full vector Maxwell’s equations. IEEE Trans. on Microwave Theory and Techniques, 2000, 48 (10): 1743- 1748.
doi: 10.1109/22.873904 |
11 |
SHIBAYAMA J, MURAKAMI B, YAMAUCHI J, et al Efficient implicit FDTD algorithm based on locally one-dimensional scheme. Electronic Letters, 2005, 41 (19): 1046- 1047.
doi: 10.1049/el:20052381 |
12 |
KONG Y D, CHU Q X High-order split-step unconditionally-stable FDTD methods and numerical analysis. IEEE Trans. on Antennas Propagation, 2011, 59 (9): 3280- 3289.
doi: 10.1109/TAP.2011.2161543 |
13 | STOER J, BULIRSCH R. Introduction to numerical analysis. 2nd ed. BARTELS R, GAUTSCHI W, WITZGALL C, trans. New York: Springer-Verlag, 1993. |
14 |
SUN G L, TRUEMAN W C Approximate Crank-Nicolson scheme for the 2-D finite-difference time-domain method for TEz waves. IEEE Trans. on Antennas Propagation, 2004, 52 (11): 2963- 2972.
doi: 10.1109/TAP.2004.835142 |
15 |
SUN G L, TRUEMAN W C Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell’s equations. Electronic Letters, 2003, 39 (7): 595- 597.
doi: 10.1049/el:20030416 |
16 | WU P Y, XIE Y J, JIANG H L, et al Unconditionally stable higher order perfectly matched layer applied to terminate anisotropic magnetized plasma. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 33 (1): e22011. |
17 | WU P Y, XIE Y J, JIANG H L, et al Higher-order approximate CN-PML theory for magnetized ferrite simulations. Advanced Theory and Simulations, 2020, 3 (4): 190021. |
18 | BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994, 114(2): 185−200. |
19 |
CHEW W C, WEEDON W H A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microwave Optical Technology Letter, 1994, 7 (13): 599- 604.
doi: 10.1002/mop.4650071304 |
20 |
KUZUOGLU J M, MITTRA R Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microwave Guided Wave Letter, 1996, 6 (12): 447- 449.
doi: 10.1109/75.544545 |
21 |
BERENGER J P Evanescent waves in PML ’s: origin of the numerical reflection in wave-structure interaction problems. IEEE Trans. on Antennas and Propagation, 1999, 47 (10): 1497- 1503.
doi: 10.1109/8.805891 |
22 |
GEDNEY S D An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. IEEE Trans. on Antennas and Propagation, 1996, 44 (12): 1630- 1639.
doi: 10.1109/8.546249 |
23 | LI L. Comparasion of FDTD analysis with absorbing boundary condition based on inverted-F antenna. Proc. of the 12th International Symposium on Antennas, Propagation and EM Theory, 2018. DOI: 10.1109/ISAPE.2018.8634295. |
24 |
FENG N X, ZHANG Y X, TIAN X Q, et al System-combined ADI-FDTD method and its electromagnetic applications in microwave circuits and antennas. IEEE Trans. on Microwave Theory and Techniques, 2019, 67 (8): 3260- 3270.
doi: 10.1109/TMTT.2019.2919838 |
25 | ZHU Y C, QIU S, LUO G X, et al. Analysis of EMP simulator with CPML. Proc. of the 4th International Conference on Intelligent Computation Technology and Automation, 2011: 451−454. |
26 | ZHAI M L, YIN W Y, CHEN Z, et al. Convolution perfectly matched layer (CPML) implementation of the WCS-FDTD method for graphene applications. Proc. of the International Symposium on Electromagnetic Compatibility, 2014: 478−481. |
27 |
HADI M, ELSHERBENI A, PIKET-MAY M, et al Radial waves based dispersion analysis of the body-of-revolution FDTD method. IEEE Trans. on Antennas and Propagation, 2017, 65 (2): 721- 729.
doi: 10.1109/TAP.2016.2633069 |
28 |
WANG Y G, YI Y, CHEN H L, et al An efficient Laguerre-based BOR-FDTD method using Gauss-Seidel procedure. IEEE Trans. on Antennas and Propagation, 2016, 64 (5): 1829- 1839.
doi: 10.1109/TAP.2016.2540644 |
29 |
ZHANG M, LIAO C, XIONG X Z, et al Solution and design technique for beam waveguide antenna system by using a parallel hybrid-dimensional FDTD method. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 364- 368.
doi: 10.1109/LAWP.2016.2577338 |
30 | CHAHAT N, RECK T, JUNG-KUBIAK C, et al 1.9-THz multiflare angle horn optimization for space instruments. IEEE Trans. on Terahertz Science and Technology, 2015, 5 (6): 914- 921. |
31 |
AHMED I, KHOO E H, LI E P Development of the CPML for three-dimensional unconditionally stable LOD-FDTD method. IEEE Trans. on Antennas and Propagation, 2010, 58 (3): 832- 837.
doi: 10.1109/TAP.2009.2039334 |
32 | RODEN J A, NUTESON T W Finite antenna array analysis and design using the FDTD technique and the CPML absorbing boundary condition. Proc. of the IEEE Antennas and Propagation Society International Symposium, 2003, 3, 776- 779. |
33 |
FRUCHTMAN A Thermomagnetic instability in a magnetized plasma. Physics of Fluids B: Plasma Physics, 1992, 4, 1397.
doi: 10.1063/1.860099 |
1 |
YEE K S Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. on Antennas and Propagation, 1966, 14 (3): 302- 307.
doi: 10.1109/TAP.1966.1138693 |
2 |
WANG Y, WANG J, YAO L, et al A hybrid method based on leapfrog ADI-FDTD and FDTD for solving multiscale transmission line network. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2020, 5, 273- 280.
doi: 10.1109/JMMCT.2020.3046273 |
3 | WU C T, PANG Y H, WU R B An improved formalism for FDTD analysis of thin-slot problems by conformal mapping technique. IEEE Trans. on Antennas and Propagation, 2003, 51 (9): 2530- 2533. |
4 |
OHTANI T, KANAI Y, COLE J B A stability improvement technique using PML condition for the three-dimensional nonuniform mesh nonstandard FDTD method. IEEE Trans. on Magnetics, 2013, 49 (5): 1569- 1572.
doi: 10.1109/TMAG.2013.2238613 |
5 |
CHAI M, XIAO T, LIU Q H Conformal method to eliminate the ADI-FDTD staircasing errors. IEEE Trans. on Electromagnetic Compatibility, 2006, 48 (2): 273- 281.
doi: 10.1109/TEMC.2006.874084 |
6 |
SHIBAYAMA J, MURAKAMI B, YAMAUCHI J, et al LOD-BOR-FDTD algorithm for efficient analysis of circularly symmetric structures. IEEE Microwave and Wireless Components Letters, 2009, 19 (2): 56- 58.
doi: 10.1109/LMWC.2008.2011302 |
7 | WU P Y, YU H, HU Y N, et al Approximate CN scheme and its open region problems for metamaterial rotational symmetric simulation. Journal of Systems Engineering and Electronics, 2022, 33 (6): 1081- 1087. |
8 |
ZHU D W, CHEN H L, YANG J, et al A novel efficient WLP-based BOR FDTD method with explicit treating ideology. IEEE Access, 2019, 7, 16858- 16869.
doi: 10.1109/ACCESS.2019.2894788 |
34 |
ELIASSONA B, SHUKLAB P K, HALL J O Parallel electron velocity shear instability in a magnetized plasma. Physics of Plasmas, 2006, 13, 024502.
doi: 10.1063/1.2173934 |
35 |
MEI J, XIE X J Effects of a hypersonic plasma sheath on the performances of dipole antenna and horn antenna. IEEE Trans. on Plasma Science, 2017, 45 (3): 364- 371.
doi: 10.1109/TPS.2017.2656159 |
36 | BLACKWELL D D, WALKERA D N, MESSER S J, et al Antenna impedance measurements in a magnetized plasma. II. Dipole antenna, 2007, 14, 092106. |
37 | JIANG H L, XIE Y J, WU P Y, et al Unsplit-field higher-order nearly PML for arbitrary media in EM simulation. Journal of Systems Engineering and Electronics, 2021, 32 (1): 1- 6. |
38 | XU L, YUAN N. FDTD formulations for scattering from 3-D anisotropic magnetized plasma objects. IEEE Antennas and Wireless Propagation Letters, 2006, 5: 335−338. |
39 |
LI J X, WU P Y Unconditionally stable CNAD- and BT-based CFS-PML implementation for truncating anisotropic magnetic plasma. IEEE Antenna Wireless Propagation Letter, 2018, 17 (7): 1176- 1180.
doi: 10.1109/LAWP.2018.2837017 |
40 |
FANG Y, XI X L, LIU J F An iterative WLP-FDTD method for wave propagation in magnetized plasma. IEEE Trans. on Plasma Science, 2017, 45 (8): 2215- 2219.
doi: 10.1109/TPS.2017.2718224 |
41 |
XU L J, YUAN N C JEC-FDTD for 2-D conducting cylinder coated by anisotropic magnetized plasma. IEEE Microwave Wireless Component Letter, 2005, 15 (12): 892- 894.
doi: 10.1109/LMWC.2005.859970 |
42 |
LIU S, LIU S B Runge-Kutta exponential time differencing FDTD method for anisotropic magnetized plasma. IEEE Antennas and Wireless Propagation Letters, 2008, 7, 306- 309.
doi: 10.1109/LAWP.2008.921370 |
43 | WU P Y, XIE Y J, JIANG H L, et al Bilinear Z-transform perfectly matched layer for rotational symmetric microwave structures with magnetised ferrite. IET Microwaves, Antennas & Propagation, 2020, 14 (4): 247- 252. |
44 |
LI J X, JIAO W, ZHAO X M Unconditionally stable CFS-PML based on CNAD-BOR-FDTD for truncating unmagnetized plasma. IEEE Trans. on Electromagnetic Compatibility, 2018, 60 (6): 2069- 2072.
doi: 10.1109/TEMC.2017.2788421 |
45 |
WU P, XIE Y J, JIANG H L, et al Performance enhanced Crank-Nicolson boundary conditions for EM problems. IEEE Trans. on Antennas and Propagation, 2021, 69 (3): 1513- 1527.
doi: 10.1109/TAP.2020.3016403 |
[1] | Peiyu WU, Han YU, Yenan HU, Yongjun XIE, Haolin JIANG. Approximate CN scheme and its open region problems for metamaterial rotational symmetric simulation [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1081-1087. |
[2] | Haolin JIANG, Yongjun XIE, Peiyu WU, Jianfeng ZHANG, Liqiang NIU. Unsplit-field higher-order nearly PML for arbitrary media in EM simulation [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 1-6. |
[3] | Yanfang CHEN, Liwei WANG. Higher order implicit CNDG-PML algorithm for left-handed materials [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 31-37. |
[4] | Liqiang NIU, Yongjun XIE, Haolin JIANG, Peiyu WU. Exponential time differencing based efficient SC-PML for RCS simulation [J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 703-711. |
[5] | Kuisong Zheng, Tengjiang Ding, Hui Yu, and Zhaoguo Hou. Application of DFT in bi-static RCS calculation of complex electrically large targets [J]. Journal of Systems Engineering and Electronics, 2015, 26(4): 732-. |
[6] | Weijun Zhong, Chuangming Tong, Guorong Huang, and Yan Geng. New UWB imaging algorithm for multiple targets detection [J]. Journal of Systems Engineering and Electronics, 2011, 22(6): 905-909. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||