30 Most Down Articles
Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month| Most Downloaded in Recent Year|

Most Downloaded in Recent Month
Please wait a minute...
For Selected: Toggle Thumbnails
Overview of radar detection methods for low altitude targets in marine environments
Yong YANG, Boyu YANG
Journal of Systems Engineering and Electronics    2024, 35 (1): 1-13.   DOI: 10.23919/JSEE.2024.000026
Abstract276)   HTML50)    PDF(pc) (4486KB)(211)       Save

In this paper, a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented, focusing on the challenges posed by sea clutter and multipath scattering. The performance of the radar detection methods under sea clutter, multipath, and combined conditions is categorized and summarized, and future research directions are outlined to enhance radar detection performance for low–altitude targets in maritime environments.

Table and Figures | Reference | Related Articles | Metrics
Computation of satellite clock-ephemeris augmentation parameters for dual-frequency multi-constellation satellite-based augmentation system
Jie CHEN, Zhigang HUANG, Rui LI
Journal of Systems Engineering and Electronics    2018, 29 (6): 1111-1123.   DOI: 10.21629/JSEE.2018.06.01
Abstract299)   HTML2)    PDF(pc) (1120KB)(941)       Save

Dual-frequency multi-constellation (DFMC) satellitebased augmentation system (SBAS) does not broadcast fast correction, which is important in reducing range error in L1-only SBAS. Meanwhile, the integrity bound of a satellite at low elevation is so loose that the service availability is decreased near the boundary of the service area. Therefore, the computation of satellite clockephemeris (SCE) augmentation parameters needs improvement. We propose a method introducing SCE prediction to eliminate most of the SCE error resulting from global navigation satellite system GNSS broadcast message. Compared with the signal-inspace (SIS) after applying augmentation parameters broadcast by the wide area augmentation system (WAAS), SIS accuracy after applying augmentation parameters computed by the proposed algorithm is improved and SIS integrity is ensured. With global positioning system (GPS) only, the availability of category-I (CAT-I) with a vertical alert level of 15 m in continental United States is about 90%, while the availability in the other part of the WAAS service area is markedly improved. With measurements made by the stations from the crustal movement observation network of China, users in some part of China can obtain CAT-I (vertical alert limit is 15 m) service with GPS and global navigation satellite system (GLONASS).

Table and Figures | Reference | Related Articles | Metrics
Scale effect removal and range migration correction for hypersonic target coherent detection
Shang WU, Zhi SUN, Xingtao JIANG, Haonan ZHANG, Jiangyun DENG, Xiaolong LI, Guolong CUI
Journal of Systems Engineering and Electronics    2024, 35 (1): 14-23.   DOI: 10.23919/JSEE.2023.000151
Abstract103)   HTML14)    PDF(pc) (2477KB)(80)       Save

The detection of hypersonic targets usually confronts range migration (RM) issue before coherent integration (CI). The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition. However, with the increasing requirement of far-range detection, the time bandwidth product, which is corresponding to radar’s mean power, should be promoted in actual application. Thus, the echo signal generates the scale effect (SE) at large time bandwidth product situation, influencing the intra and inter pulse integration performance. To eliminate SE and correct RM, this paper proposes an effective algorithm, i.e., scaled location rotation transform (ScLRT). The ScLRT can remove SE to obtain the matching pulse compression (PC) as well as correct RM to complete CI via the location rotation transform, being implemented by seeking the actual rotation angle. Compared to the traditional coherent detection algorithms, ScLRT can address the SE problem to achieve better detection/estimation capabilities. At last, this paper gives several simulations to assess the viability of ScLRT.

Table and Figures | Reference | Related Articles | Metrics
Short-time maritime target detection based on polarization scattering characteristics
Shichao CHEN, Feng LUO, Min TIAN, Wanghan LYU
Journal of Systems Engineering and Electronics    2024, 35 (1): 55-64.   DOI: 10.23919/JSEE.2023.000148
Abstract85)   HTML3)    PDF(pc) (4076KB)(48)       Save

In this paper, a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed. Firstly, the Cameron decomposition is exploited to fuse the radar echoes of full polarization channels at the data level. Due to the artificial material structure on the surface of the target, it can be shown that the non-reciprocity of the target cell is stronger than that of the clutter cell. Then, based on the analysis of the decomposition results, a new feature with scattering geometry characteristics in polarization domain, denoted as Cameron polarization decomposition scattering weight (CPD-SW), is extracted as the test statistic, which can achieve more detailed descriptions of the clutter scattering characteristics utilizing the difference between their scattering types. Finally, the superiority of the proposed CPD-SW detector over traditional detectors in improving detection performance is verified by the IPIX measured dataset, which has strong stability under short-time observation in threshold detection and can also improve the separability of feature space zin anomaly detection.

Table and Figures | Reference | Related Articles | Metrics
Recognition and interfere deceptive behavior based on inverse reinforcement learning and game theory
Yunxiu ZENG, Kai XU
Journal of Systems Engineering and Electronics    2023, 34 (2): 270-288.   DOI: 10.23919/JSEE.2023.000012
Abstract107)   HTML5)    PDF(pc) (8851KB)(188)       Save

In real-time strategy (RTS) games, the ability of recognizing other players’ goals is important for creating artifical intelligence (AI) players. However, most current goal recognition methods do not take the player ’s deceptive behavior into account which often occurs in RTS game scenarios, resulting in poor recognition results. In order to solve this problem, this paper proposes goal recognition for deceptive agent, which is an extended goal recognition method applying the deductive reason method (from general to special) to model the deceptive agent’s behavioral strategy. First of all, the general deceptive behavior model is proposed to abstract features of deception, and then these features are applied to construct a behavior strategy that best matches the deceiver’s historical behavior data by the inverse reinforcement learning (IRL) method. Final, to interfere with the deceptive behavior implementation, we construct a game model to describe the confrontation scenario and the most effective interference measures.

Table and Figures | Reference | Related Articles | Metrics
Robust adaptive radar beamforming based on iterative training sample selection using kurtosis of generalized inner product statistics
Jing TIAN, Wei ZHANG
Journal of Systems Engineering and Electronics    2024, 35 (1): 24-30.   DOI: 10.23919/JSEE.2024.000025
Abstract78)   HTML4)    PDF(pc) (2688KB)(65)       Save

In engineering application, there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval (PRI). Therefore, if the training samples used to calculate the weight vector does not contain the jamming, then the jamming cannot be removed by adaptive spatial filtering. If the weight vector is constantly updated in the range dimension, the training data may contain target echo signals, resulting in signal cancellation effect. To cope with the situation that the training samples are contaminated by target signal, an iterative training sample selection method based on non-homogeneous detector (NHD) is proposed in this paper for updating the weight vector in entire range dimension. The principle is presented, and the validity is proven by simulation results.

Table and Figures | Reference | Related Articles | Metrics
Product quality prediction based on RBF optimized by firefly algorithm
Huihui HAN, Jian WANG, Sen CHEN, Manting YAN
Journal of Systems Engineering and Electronics    2024, 35 (1): 105-117.   DOI: 10.23919/JSEE.2023.000061
Abstract12)   HTML1)    PDF(pc) (5471KB)(27)       Save

With the development of information technology, a large number of product quality data in the entire manufacturing process is accumulated, but it is not explored and used effectively. The traditional product quality prediction models have many disadvantages, such as high complexity and low accuracy. To overcome the above problems, we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model: radial basis function model optimized by the firefly algorithm with Levy flight mechanism (RBFFALM). First, the new data equalization method is introduced to pre-process the dataset, which reduces the dimension of the data, removes redundant features, and improves the data distribution. Then the RBFFALFM is used to predict product quality. Comprehensive experiments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous methods on predicting pro-duct quality.

Table and Figures | Reference | Related Articles | Metrics
Special Section on Autonomous Decision and Cooperative Control of UAV Swarms
Wenwu YU, Wei REN, Dong ZHANG
Journal of Systems Engineering and Electronics    2023, 34 (6): 0-0.  
Abstract155)   HTML36)    PDF(pc) (734KB)(207)       Save
Reference | Related Articles | Metrics
CONTENTS
Journal of Systems Engineering and Electronics    2024, 35 (1): 0-.  
Abstract55)      PDF(pc) (111KB)(35)       Save
Related Articles | Metrics
Identity-aware convolutional neural networks for facial expression recognition
Chongsheng Zhang, Pengyou Wang, Ke Chen, and Joni-Kristian K¨am¨ ar¨ainen
Systems Engineering and Electronics    DOI: 10.21629/JSEE.2017.04.18
Highly maneuvering target tracking using multi-parameter fusion Singer model
Shuyi Jia, Yun Zhang, and Guohong Wang
Systems Engineering and Electronics    DOI: 10.21629/JSEE.2017.05.03
Two-layer formation-containment fault-tolerant control of fixed-wing UAV swarm for dynamic target tracking
Boyu QIN, Dong ZHANG, Shuo TANG, Yang XU
Journal of Systems Engineering and Electronics    2023, 34 (6): 1375-1396.   DOI: 10.23919/JSEE.2023.000153
Abstract218)   HTML24)    PDF(pc) (22266KB)(271)       Save

This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle (UAV) swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs ’ actuator and sensor. The fixed-wing UAV swarm under consideration is organized as a “multi-leader-multi-follower” structure, in which only several leaders can obtain the dynamic target information while others only receive the neighbors’ information through the communication network. To simultaneously realize the formation, containment, and dynamic target tracking, a two-layer control framework is adopted to decouple the problem into two subproblems: reference trajectory generation and trajectory tracking. In the upper layer, a distributed finite-time estimator (DFTE) is proposed to generate each UAV ’s reference trajectory in accordance with the control objective. Subsequently, a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer, where a novel adaptive extended super-twisting (AESTW) algorithm with a finite-time extended state observer (FTESO) is involved in solving the robust trajectory tracking control problem under model uncertainties, actuator, and sensor faults. The proposed controller simultaneously guarantees rapidness and enhances the system ’s robustness with fewer chattering effects. Finally, corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme.

Table and Figures | Reference | Related Articles | Metrics
A survey on joint-operation application for unmanned swarm formations under a complex confrontation environment
Jialong ZHANG, Kun HAN, Pu ZHANG, Zhongxi HOU, Lei YE
Journal of Systems Engineering and Electronics    2023, 34 (6): 1432-1446.   DOI: 10.23919/JSEE.2023.000162
Abstract230)   HTML20)    PDF(pc) (4415KB)(248)       Save

With the rapid development of informatization, autonomy and intelligence, unmanned swarm formation intelligent operations will become the main combat mode of future wars. Typical unmanned swarm formations such as ground-based directed energy weapon formations, space-based kinetic energy weapon formations, and sea-based carrier-based formations have become the trump card for winning future wars. In a complex confrontation environment, these sophisticated weapon formation systems can precisely strike mobile threat group targets, making them extreme deterrents in joint combat applications. Based on this, first, this paper provides a comprehensive summary of the outstanding advantages, strategic position and combat style of unmanned clusters in joint warfare to highlight their important position in future warfare. Second, a detailed analysis of the technological breakthroughs in four key areas, situational awareness, heterogeneous coordination, mixed combat, and intelligent assessment of typical unmanned aerial vehicle (UAV) swarms in joint warfare, is presented. An in-depth analysis of the UAV swarm communication networking operating mechanism during joint warfare is provided to lay the theoretical foundation for subsequent cooperative tracking and control. Then, an in-depth analysis of the shut-in technology requirements of UAV clusters in joint warfare is provided to lay a theoretical foundation for subsequent cooperative tracking control. Finally, the technical requirements of UAV clusters in joint warfare are analysed in depth so the key technologies can form a closed-loop kill chain system and provide theoretical references for the study of intelligent command operations.

Table and Figures | Reference | Related Articles | Metrics
Relational graph location network for multi-view image localization
Yukun YANG, Xiangdong LIU
Journal of Systems Engineering and Electronics    2023, 34 (2): 460-468.   DOI: 10.23919/JSEE.2023.000050
Abstract65)   HTML0)    PDF(pc) (5188KB)(86)       Save

In multi-view image localization task, the features of the images captured from different views should be fused properly. This paper considers the classification-based image localization problem. We propose the relational graph location network (RGLN) to perform this task. In this network, we propose a heterogeneous graph construction approach for graph classification tasks, which aims to describe the location in a more appropriate way, thereby improving the expression ability of the location representation module. Experiments show that the expression ability of the proposed graph construction approach outperforms the compared methods by a large margin. In addition, the proposed localization method outperforms the compared localization methods by around 1.7% in terms of meter-level accuracy.

Table and Figures | Reference | Related Articles | Metrics
Mission reliability modeling and evaluation for reconfigurable unmanned weapon system-of-systems based on effective operation loop
Zhiwei CHEN, Ziming ZHOU, Luogeng ZHANG, Chaowei CUI, Jilong ZHONG
Journal of Systems Engineering and Electronics    2023, 34 (3): 588-597.   DOI: 10.23919/JSEE.2023.000082
Abstract108)   HTML11)    PDF(pc) (1986KB)(178)       Save

The concept of unmanned weapon system-of-systems (UWSoS) involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission. The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission. However, issues with heterogeneity, cooperation between systems, and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods. This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration. First, we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints. Then, we propose an effective operation-loop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline. Moreover, a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration, revealing the evolution law of the effective operation loop and mission reliability. Finally, a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods. The mission reliability is achieved by considering external shocks, which can serve as a reference for evaluating and improving the effectiveness of UWSoS.

Table and Figures | Reference | Related Articles | Metrics
Network-based structure optimization method of the anti-aircraft system
Qingsong ZHAO, Junyi DING, Jichao LI, Huachao LI, Boyuan XIA
Journal of Systems Engineering and Electronics    2023, 34 (2): 374-395.   DOI: 10.23919/JSEE.2023.000019
Abstract86)   HTML6)    PDF(pc) (7289KB)(97)       Save

The anti-aircraft system plays an irreplaceable role in modern combat. An anti-aircraft system consists of various types of functional entities interacting to destroy the hostile aircraft moving in high speed. The connecting structure of combat entities in it is of great importance for supporting the normal process of the system. In this paper, we explore the optimizing strategy of the structure of the anti-aircraft network by establishing extra communication channels between the combat entities. Firstly, the thought of combat network model (CNM) is borrowed to model the anti-aircraft system as a heterogeneous network. Secondly, the optimization objectives are determined as the survivability and the accuracy of the system. To specify these objectives, the information chain and accuracy chain are constructed based on CNM. The causal strength (CAST) logic and influence network (IN) are introduced to illustrate the establishment of the accuracy chain. Thirdly, the optimization constraints are discussed and set in three aspects: time, connection feasibility and budget. The time constraint network (TCN) is introduced to construct the timing chain and help to detect the timing consistency. Then, the process of the multi-objective optimization of the structure of the anti-aircraft system is designed. Finally, a simulation is conducted to prove the effectiveness and feasibility of the proposed method. Non-dominated sorting based genetic algorithm-II (NSGA2) is used to solve the multi-objective optimization problem and two other algorithms including non-dominated sorting based genetic algorithm-III (NSGA3) and strength Pareto evolutionary algorithm-II (SPEA2) are employed as comparisons. The deciders and system builders can make the anti-aircraft system improved in the survivability and accuracy in the combat reality.

Table and Figures | Reference | Related Articles | Metrics
Intuitionistic fuzzy C-means clustering algorithms
Zeshui Xu and Junjie Wu
Journal of Systems Engineering and Electronics    2010, 21 (4): 580-590.   DOI: 10.3969/j.issn.1004-4132.2010.04.009
Abstract1208)      PDF(pc) (410KB)(1197)       Save
Intuitionistic fuzzy sets (IFSs) are useful means to describe and deal with vague and uncertain data. An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed. In each stage of the intuitionistic fuzzy C-means method the seeds are modified, and for each IFS a membership degree to each of the clusters is estimated. In the end of the algorithm, all the given IFSs are clustered according to the estimated membership degrees. Furthermore, the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets (IVIFSs). Finally, the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets.

Related Articles | Metrics
Joint DOA and polarization estimation for unequal power sources based on reconstructed noise subspace
Yong Han, Qingyuan Fang,Fenggang Yan,Ming Jin, and Xiaolin Qiao
Systems Engineering and Electronics    DOI: 10.1109/JSEE.2016.00053
An optimization method: hummingbirds optimization algorithm
Zhuoran ZHANG, Changqiang HUANG, Hanqiao HUANG, Shangqin TANG, Kangsheng DONG
Journal of Systems Engineering and Electronics    2018, 29 (2): 386-404.   DOI: 10.21629/JSEE.2018.02.19
Abstract437)   HTML0)    PDF(pc) (1083KB)(674)       Save

This paper introduces an optimization algorithm, the hummingbirds optimization algorithm (HOA), which is inspired by the foraging process of hummingbirds. The proposed algorithm includes two phases: a self-searching phase and a guide-searching phase. With these two phases, the exploration and exploitation abilities of the algorithm can be balanced. Both the constrained and unconstrained benchmark functions are employed to test the performance of HOA. Ten classic benchmark functions are considered as unconstrained benchmark functions. Meanwhile, two engineering design optimization problems are employed as constrained benchmark functions. The results of these experiments demonstrate HOA is efficient and capable of global optimization.

Table and Figures | Reference | Related Articles | Metrics
A secure image steganography algorithm based on least significant bit and integer wavelet transform
Emad ELSHAZLY, Safey ABDELWAHAB, Refaat ABOUZAID, Osama ZAHRAN, Sayed ELARABY, Mohamed ELKORDY
Journal of Systems Engineering and Electronics    2018, 29 (3): 639-649.   DOI: 10.21629/JSEE.2018.03.21
Abstract487)   HTML3)    PDF(pc) (1877KB)(782)       Save

The rapid development of data communication in modern era demands secure exchange of information. Steganography is an established method for hiding secret data from an unauthorized access into a cover object in such a way that it is invisible to human eyes. The cover object can be image, text, audio, or video. This paper proposes a secure steganography algorithm that hides a bitstream of the secret text into the least significant bits (LSBs) of the approximation coefficients of the integer wavelet transform (IWT) of grayscale images as well as each component of color images to form stego-images. The embedding and extracting phases of the proposed steganography algorithms are performed using the MATLAB software. Invisibility, payload capacity, and security in terms of peak signal to noise ratio (PSNR) and robustness are the key challenges to steganography. The statistical distortion between the cover images and the stego-images is measured by using the mean square error (MSE) and the PSNR, while the degree of closeness between them is evaluated using the normalized cross correlation (NCC). The experimental results show that, the proposed algorithms can hide the secret text with a large payload capacity with a high level of security and a higher invisibility. Furthermore, the proposed technique is computationally efficient and better results for both PSNR and NCC are achieved compared with the previous algorithms.

Table and Figures | Reference | Related Articles | Metrics
MTSS: multi-path traffic scheduling mechanism based on SDN
Xiaolong XU, Yun CHEN, Liuyun HU, Anup KUMAR
Journal of Systems Engineering and Electronics    2019, 30 (5): 974-984.   DOI: 10.21629/JSEE.2019.05.14
Abstract453)   HTML2)    PDF(pc) (683KB)(457)       Save

Large-scale and diverse businesses based on the cloud computing platform bring the heavy network traffic to cloud data centers. However, the unbalanced workload of cloud data center network easily leads to the network congestion, the low resource utilization rate, the long delay, the low reliability, and the low throughput. In order to improve the utilization efficiency and the quality of services (QoS) of cloud system, especially to solve the problem of network congestion, we propose MTSS, a multi-path traffic scheduling mechanism based on software defined networking (SDN). MTSS utilizes the data flow scheduling flexibility of SDN and the multi-path feature of the fat-tree structure to improve the traffic balance of the cloud data center network. A heuristic traffic balancing algorithm is presented for MTSS, which periodically monitors the network link and dynamically adjusts the traffic on the heavy link to achieve programmable data forwarding and load balancing. The experimental results show that MTSS outperforms equal-cost multi-path protocol (ECMP), by effectively reducing the packet loss rate and delay. In addition, MTSS improves the utilization efficiency, the reliability and the throughput rate of the cloud data center network.

Table and Figures | Reference | Related Articles | Metrics
A hypersonic target coherent integration detection algorithm based on Doppler feedback
Lin LI, Guohong WANG, Dianxing SUN, Xiangyu ZHANG
Journal of Systems Engineering and Electronics    2020, 31 (1): 85-94.   DOI: 10.21629/JSEE.2020.01.10
Abstract387)   HTML1)    PDF(pc) (839KB)(252)       Save

The traversal search of multi-dimensional parameter during the process of hypersonic target echo signal coherent integration, leads to the problem of large amounts of calculation and poor real-time performance. In view of these problems, a modified polynomial Radon-polynomial Fourier transform (MPRPFT) hypersonic target coherent integration detection algorithm based on Doppler feedback is proposed in this paper. Firstly, the Doppler estimation value of the target is obtained by using the target point information obtained by subsequent non-coherent integration detection. Then, the feedback adjustment of the coherent integration process is performed by using the acquired target Doppler estimation value. Finally, the coherent integration is completed after adjusting the search interval of compensation. The simulation results show that the algorithm can effectively reduce the computational complexity and improve the real-time performance on the basis of the effective coherent integration of hypersonic target echo signals.

Table and Figures | Reference | Related Articles | Metrics
A goal-based approach for modeling and simulation of different types of system-of-systems
Yimin FENG, Chenchu ZHOU, Qiang ZOU, Yusheng LIU, Jiyuan LYU, Xinfeng WU
Journal of Systems Engineering and Electronics    2023, 34 (3): 627-640.   DOI: 10.23919/JSEE.2023.000084
Abstract68)   HTML3)    PDF(pc) (1326KB)(67)       Save

A system of systems (SoS) composes a set of independent constituent systems (CSs), where the degree of authority to control the independence of CSs varies, depending on different SoS types. Key researchers describe four SoS types with descending levels of central authority: directed, acknowledged, collaborative and virtual. Although the definitions have been recognized in SoS engineering, what is challenging is the difficulty of translating these definitions into models and simulation environments. Thus, we provide a goal-based method including a mathematical baseline to translate these definitions into more effective agent-based modeling and simulations. First, we construct the theoretical models of CS and SoS. Based on the theoretical models, we analyze the degree of authority influenced by SoS characteristics. Next, we propose a definition of SoS types by quantitatively explaining the degree of authority. Finally, we recognize the differences between acknowledged SoS and collaborative SoS using a migrating waterfowl flock by an agent-based model (ABM) simulation. This paper contributes to the SoS body of knowledge by increasing our understanding of the degree of authority in an SoS, so we may identify suitable SoS types to achieve SoS goals by modeling and simulation.

Table and Figures | Reference | Related Articles | Metrics
Persymmetric adaptive polarimetric detection of subspace range-spread targets in compound Gaussian sea clutter
Shuwen XU, Yifan HAO, Zhuo WANG, Jian XUE
Journal of Systems Engineering and Electronics    2024, 35 (1): 31-42.   DOI: 10.23919/JSEE.2023.000133
Abstract83)   HTML3)    PDF(pc) (8610KB)(39)       Save

This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and non-Gaussian sea clutter. The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters, and the target is modeled as a subspace range-spread target model. The persymmetric structure is used to model the clutter covariance matrix, in order to reduce the reliance on secondary data of the designed detectors. Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test (GLRT), Rao test, and Wald test. All the proposed detectors have constant false-alarm rate property with respect to the clutter texture, the speckle covariance matrix. Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments, and the proposed GLRT detector has the best detection performance under different parameters.

Table and Figures | Reference | Related Articles | Metrics
Compressive sensing based multiuser detector for massive MBM MIMO uplink
Wei SONG, Wenzheng WANG
Journal of Systems Engineering and Electronics    2020, 31 (1): 19-27.   DOI: 10.21629/JSEE.2020.01.03
Abstract376)   HTML9)    PDF(pc) (387KB)(344)       Save

Media based modulation (MBM) is expected to be a prominent modulation scheme, which has access to the high data rate by using radio frequency (RF) mirrors and fewer transmit antennas. Associated with multiuser multiple input multiple output (MIMO), the MBM scheme achieves better performance than other conventional multiuser MIMO schemes. In this paper, the massive MIMO uplink is considered and a conjunctive MBM transmission scheme for each user is employed. This conjunctive MBM transmission scheme gathers aggregate MBM signals in multiple continuous time slots, which exploits the structured sparsity of these aggregate MBM signals. Under this kind of scenario, a multiuser detector with low complexity based on the compressive sensing (CS) theory to gain better detection performance is proposed. This detector is developed from the greedy sparse recovery technique compressive sampling matching pursuit (CoSaMP) and exploits not only the inherently distributed sparsity of MBM signals but also the structured sparsity of multiple aggregate MBM signals. By exploiting these sparsity, the proposed CoSaMP based multiuser detector achieves reliable detection with low complexity. Simulation results demonstrate that the proposed CoSaMP based multiuser detector achieves better detection performance compared with the conventional methods.

Table and Figures | Reference | Related Articles | Metrics
Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization
Zhen XU, Enze ZHANG, Qingwei CHEN
Journal of Systems Engineering and Electronics    2020, 31 (1): 130-141.   DOI: 10.21629/JSEE.2020.01.14
Abstract491)   HTML14)    PDF(pc) (2868KB)(698)       Save

This paper presents a path planning approach for rotary unmanned aerial vehicles (R-UAVs) in a known static rough terrain environment. This approach aims to find collision-free and feasible paths with minimum altitude, length and angle variable rate. First, a three-dimensional (3D) modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs. Considering the length, height and tuning angle of a path, the path planning of R-UAVs is described as a tri-objective optimization problem. Then, an improved multi-objective particle swarm optimization algorithm is developed. To render the algorithm more effective in dealing with this problem, a vibration function is introduced into the collided solutions to improve the algorithm efficiency. Meanwhile, the selection of the global best position is taken into account by the reference point method. Finally, the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine. Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.

Table and Figures | Reference | Related Articles | Metrics
A workload-based nonlinear approach for predicting available computing resources
Yunfei JIA, Zhiquan ZHOU, Renbiao WU
Journal of Systems Engineering and Electronics    2020, 31 (1): 224-230.   DOI: 10.21629/JSEE.2020.01.21
Abstract310)   HTML2)    PDF(pc) (4060KB)(222)       Save

Performance degradation or system resource exhaustion can be attributed to inadequate computing resources as a result of software aging. In the real world, the workload of a web server varies with time, which will cause a nonlinear aging phenomenon. The nonlinear property often makes analysis and modelling difficult. Workload is one of the important factors influencing the speed of aging. This paper quantitatively analyzes the workload-aging relation and proposes a framework for aging control under varying workloads. In addition, this paper proposes an approach that employs prior information of workloads to accurately forecast incoming system exhaustion. The workload data are used as a threshold to divide the system resource usage data into multiple sections, while in each section the workload data can be treated as a constant. Each section is described by an individual autoregression (AR) model. Compared with other AR models, the proposed approach can forecast the aging process with a higher accuracy.

Table and Figures | Reference | Related Articles | Metrics
Adaptive detection of range-spread targets in homogeneous and partially homogeneous clutter plus subspace interference
Tao JIAN, Jia HE, Bencai WANG, Yu LIU, Congan XU, Zikeng XIE
Journal of Systems Engineering and Electronics    2024, 35 (1): 43-54.   DOI: 10.23919/JSEE.2023.000147
Abstract80)   HTML3)    PDF(pc) (3440KB)(39)       Save

Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix. The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates. Relying on the two-step criteria, two adaptive detectors based on Gradient tests are proposed, in homogeneous and partially homogeneous clutter plus subspace interference, respectively. Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level. Numerical results show that, the proposed detectors have better performance than their existing counterparts, especially for mismatches in the signal steering vectors.

Table and Figures | Reference | Related Articles | Metrics
Design of integral sliding mode guidance law based on disturbance observer
Jianping ZHOU, Wenjie ZHANG, Hang ZHOU, Qiang LI, Qunli XIA
Journal of Systems Engineering and Electronics    2024, 35 (1): 186-194.   DOI: 10.23919/JSEE.2023.000111
Abstract17)   HTML2)    PDF(pc) (6387KB)(18)       Save

With the increasing precision of guidance, the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant. In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence, this paper suggests a guidance system model involving a novel integral sliding mode guidance law (ISMGL). The method utilizes the dynamic characteristics and the impact angle, combined with a sliding mode surface scheme that includes the desired line-of-sight angle, line-of-sight angular rate, and second-order differential of the angular line-of-sight. At the same time, the evaluation scenario considere the target maneuvering in the system as the external disturbance, and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command. The proposed system’s stability is proven based on the Lyapunov stability criterion. The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws. Furthermore, ISMGL has a more accurate impact angle and fast convergence speed.

Table and Figures | Reference | Related Articles | Metrics
Design of multi-band frequency selective surfaces using multi-periodicity combined elements
Lü Mingyun, Huang Minjie & Wu Zhe
Journal of Systems Engineering and Electronics    2009, 20 (4): 675-680.  
Abstract683)      PDF(pc) (325KB)(1844)       Save

Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To solve this problem, an approach of combining elements in different period to build a hybrid array is presented. The results of series of numerical simulation show that multi-periodicity combined element FSS, which are designed using this approach, usually have much weaker grating lobes than the traditional FSS. Furthermore, their frequency response can be well predicted through the properties of their member element FSS. A prediction method for estimating the degree of expected grating lobe energy loss in designing multi-band FSS using this approach is provided.

Related Articles | Metrics
Integral terminal sliding mode control for nonlinear systems
Jianguo GUO, Yuchao LIU, Jun ZHOU
Journal of Systems Engineering and Electronics    2018, 29 (3): 571-579.   DOI: 10.21629/JSEE.2018.03.14
Abstract373)   HTML3)    PDF(pc) (478KB)(835)       Save

This paper proposes a fast integral terminal sliding mode (ITSM) control method for a cascaded nonlinear dynamical system with mismatched uncertainties. Firstly, an integral terminal sliding mode surface is presented, which not only avoids the singularity in the traditional terminal sliding mode, but also addresses the mismatched problems in the nonlinear control system. Secondly, a new ITSM controller with finite convergence time based on the backstepping technique is derived for a cascaded nonlinear dynamical system with mismatched uncertainties. Thirdly, the convergence time of ITSM is analyzed, whose convergence speed is faster than those of two nonsingular terminal sliding modes. Finally, simulation results are presented in order to evaluate the effectiveness of ITSM control strategies for mismatched uncertainties.

Table and Figures | Reference | Related Articles | Metrics
Scaling parameters selection principle for the scaled unscented Kalman filter
Yongfang NIE, Tao ZHANG
Journal of Systems Engineering and Electronics    2018, 29 (3): 601-610.   DOI: 10.21629/JSEE.2018.03.17
Abstract345)   HTML9)    PDF(pc) (387KB)(504)       Save

The paper deals with the state estimation of the widely used scaled unscented Kalman filter (UKF). In particular, the stress is laid on the scaling parameters selection principle for the scaled UKF. Several problems caused by recommended constant scaling parameters are highlighted. On the basis of the analyses, an effective scaled UKF is proposed with self-adaptive scaling parameters, which is easy to understand and implement in engineering. Two typical strong nonlinear examples are given and their simulation results show the effectiveness of the proposed principle and algorithm.

Table and Figures | Reference | Related Articles | Metrics
Stochastic convergence analysis of cubature Kalman filter with intermittent observations
Jie SHI, Guoqing QI, Yinya LI, Andong SHENG
Journal of Systems Engineering and Electronics    2018, 29 (4): 823-833.   DOI: 10.21629/JSEE.2018.04.17
Abstract309)   HTML0)    PDF(pc) (531KB)(535)       Save

The stochastic convergence of the cubature Kalman filter with intermittent observations (CKFI) for general nonlinear stochastic systems is investigated. The Bernoulli distributed random variable is employed to describe the phenomenon of intermittent observations. According to the cubature sample principle, the estimation error and the error covariance matrix (ECM) of CKFI are derived by Taylor series expansion, respectively. Afterwards, it is theoretically proved that the ECM will be bounded if the observation arrival probability exceeds a critical minimum observation arrival probability. Meanwhile, under proper assumption corresponding with real engineering situations, the stochastic stability of the estimation error can be guaranteed when the initial estimation error and the stochastic noise terms are sufficiently small. The theoretical conclusions are verified by numerical simulations for two illustrative examples; also by evaluating the tracking performance of the optical-electric target tracking system implemented by CKFI and unscented Kalman filter with intermittent observations (UKFI) separately, it is demonstrated that the proposed CKFI slightly outperforms the UKFI with respect to tracking accuracy as well as real time performance.

Table and Figures | Reference | Related Articles | Metrics
TDOA estimation of dual-satellites interference localization based on blind separation
Ting SU, Yong GAO
Journal of Systems Engineering and Electronics    2019, 30 (4): 696-702.   DOI: 10.21629/JSEE.2019.04.07
Abstract296)   HTML5)    PDF(pc) (523KB)(303)       Save

The time difference of arrival (TDOA) estimation plays a crucial role in the accurate localization of the satellite interference source. In the dual-satellites interference source localization system, the target signal from the adjacent satellite is likely to be interfered by the normal communication signal with the same frequency. Therefore, the signal to noise ratio (SNR) of the target signal would become too low, and the TDOA estimation through cross-correlation processing would be unreliable or even unattainable. This paper proposes a technique based on blind separation to solve the co-channel interference problem, where separation of the mixed signal can be carried out by the particle filter (PF) algorithm. The experimental results show that the proposed method could achieve more accurate TDOA estimation. The measured data obtained by using the software radio platform at 915 MHz and 2 GHz respectively verify the effectiveness of the proposed method.

Table and Figures | Reference | Related Articles | Metrics
Review of local mean decomposition and its application in fault diagnosis of rotating machinery
Yongbo LI, Shubin SI, Zhiliang LIU, Xihui LIANG
Journal of Systems Engineering and Electronics    2019, 30 (4): 799-814.   DOI: 10.21629/JSEE.2019.04.17
Abstract388)   HTML7)    PDF(pc) (803KB)(809)       Save

Rotating machinery is widely used in the industry. They are vulnerable to many kinds of damages especially for those working under tough and time-varying operation conditions. Early detection of these damages is important, otherwise, they may lead to large economic loss even a catastrophe. Many signal processing methods have been developed for fault diagnosis of the rotating machinery. Local mean decomposition (LMD) is an adaptive mode decomposition method that can decompose a complicated signal into a series of mono-components, namely product functions (PFs). In recent years, many researchers have adopted LMD in fault detection and diagnosis of rotating machines. We give a comprehensive review of LMD in fault detection and diagnosis of rotating machines. First, the LMD is described. The advantages, disadvantages and some improved LMD methods are presented. Then, a comprehensive review on applications of LMD in fault diagnosis of the rotating machinery is given. The review is divided into four parts:fault diagnosis of gears, fault diagnosis of rotors, fault diagnosis of bearings, and other LMD applications. In each of these four parts, a review is given to applications applying the LMD, improved LMD, and LMD-based combination methods, respectively. We give a summary of this review and some future potential topics at the end.

Table and Figures | Reference | Related Articles | Metrics
Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing
Shixin WANG, Yuan ZHAO, Ibrahim LAILA, Ying XIONG, Jun WANG, Bin TANG
Journal of Systems Engineering and Electronics    2020, 31 (1): 28-36.   DOI: 10.21629/JSEE.2020.01.04
Abstract385)   HTML0)    PDF(pc) (1083KB)(357)       Save

A joint two-dimensional (2D) direction-of-arrival (DOA) and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing (CS) framework. Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix, three smaller scale matrices with independent azimuth, elevation and Doppler frequency are introduced adopting a separable observation model. Afterwards, the estimation is achieved by $L_{1}$-norm minimization and the Bayesian CS algorithm. In addition, under the L-shaped array topology, the azimuth and elevation are separated yet coupled to the same radial Doppler frequency. Hence, the pair matching problem is solved with the aid of the radial Doppler frequency. Finally, numerical simulations corroborate the feasibility and validity of the proposed algorithm.

Table and Figures | Reference | Related Articles | Metrics
An anomaly detection method for spacecraft solar arrays based on the ILS-SVM model
Yu WANG, Tao ZHANG, Jianjiang HUI, Yajie LIU
Journal of Systems Engineering and Electronics    2023, 34 (2): 515-529.   DOI: 10.23919/JSEE.2023.000011
Abstract46)   HTML1)    PDF(pc) (4232KB)(58)       Save

Solar arrays are important and indispensable parts of spacecraft and provide energy support for spacecraft to operate in orbit and complete on-orbit missions. When a spacecraft is in orbit, because the solar array is exposed to the harsh space environment, with increasing working time, the performance of its internal electronic components gradually degrade until abnormal damage occurs. This damage makes solar array power generation unable to fully meet the energy demand of a spacecraft. Therefore, timely and accurate detection of solar array anomalies is of great significance for the on-orbit operation and maintenance management of spacecraft. In this paper, we propose an anomaly detection method for spacecraft solar arrays based on the integrated least squares support vector machine (ILS-SVM) model: it selects correlated telemetry data from spacecraft solar arrays to form a training set and extracts n groups of training subsets from this set, then gets n corresponding least squares support vector machine (LS-SVM) submodels by training on these training subsets, respectively; after that, the ILS-SVM model is obtained by integrating these submodels through a weighting operation to increase the prediction accuracy and so on; finally, based on the obtained ILS-SVM model, a parameter-free and unsupervised anomaly determination method is proposed to detect the health status of solar arrays. We use the telemetry data set from a satellite in orbit to carry out experimental verification and find that the proposed method can diagnose solar array anomalies in time and can capture the signs before a solar array anomaly occurs, which reflects the applicability of the method.

Table and Figures | Reference | Related Articles | Metrics
Complex systems and network science: a survey
Kewei YANG, Jichao LI, Maidi LIU, Tianyang LEI, Xueming XU, Hongqian WU, Jiaping CAO, Gaoxin QI
Journal of Systems Engineering and Electronics    2023, 34 (3): 543-573.   DOI: 10.23919/JSEE.2023.000080
Abstract218)   HTML24)    PDF(pc) (8641KB)(264)       Save

Complex systems widely exist in nature and human society. There are complex interactions between system elements in a complex system, and systems show complex features at the macro level, such as emergence, self-organization, uncertainty, and dynamics. These complex features make it difficult to understand the internal operation mechanism of complex systems. Networked modeling of complex systems is a favorable means of understanding complex systems. It not only represents complex interactions but also reflects essential attributes of complex systems. This paper summarizes the research progress of complex systems modeling and analysis from the perspective of network science, including networked modeling, vital node analysis, network invulnerability analysis, network disintegration analysis, resilience analysis, complex network link prediction, and the attacker-defender game in complex networks. In addition, this paper presents some points of view on the trend and focus of future research on network analysis of complex systems.

Table and Figures | Reference | Related Articles | Metrics
Deep convolutional neural network for meteorology target detection in airborne weather radar images
Chaopeng YU, Wei XIONG, Xiaoqing LI, Lei DONG
Journal of Systems Engineering and Electronics    2023, 34 (5): 1147-1157.   DOI: 10.23919/JSEE.2023.000142
Abstract89)   HTML6)    PDF(pc) (8912KB)(75)       Save

Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters, the accuracy and confidence of meteorology target detection are reduced. In this paper, a deep convolutional neural network (DCNN) is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input. For each weather radar image, the corresponding digital elevation model (DEM) image is extracted on basis of the radar antenna scanning parameters and plane position, and is further fed to the network as a supplement for ground clutter suppression. The features of actual meteorology targets are learned in each bottleneck module of the proposed network and convolved into deeper iterations in the forward propagation process. Then the network parameters are updated by the back propagation iteration of the training error. Experimental results on the real measured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors. Meanwhile, the network outputs are in good agreement with the expected meteorology detection results (labels). It is demonstrated that the proposed network would have a promising meteorology observation application with minimal effort on network variables or parameter changes.

Table and Figures | Reference | Related Articles | Metrics
Interval grey number sequence prediction by using non-homogenous exponential discrete grey forecasting model  
Naiming Xie and Sifeng Liu
Journal of Systems Engineering and Electronics    DOI: 10.1109/JSEE.2015.00013
Accepted: 20 December 2019