A mathematical model to determine the optimal production lot size for a deteriorating production system under an extended product inspection policy is developed. The last-K product inspection policy is considered so that the nonconforming items can be reduced, under which the last K products in a production lot are inspected and the nonconforming items from those inspected are reworked. Consider that the products produced towards the end of a production lot are more likely to be nonconforming, is proposed an extended product inspection policy for a deteriorating production system. That is, in a production lot, product inspections are performed among the middle K1 items and after inspections, all of the last K2 products are directly reworked without inspections. Our objective here is the joint optimization of the production lot size and the corresponding extended inspection policy such that the expected total cost per unit time is minimized. Since there is no closed form expression for our optimal policy, the existence for the optimal production inspection policy and an upper bound for the optimal lot size are obtained. Furthermore, an efficient solution procedure is provided to search for the optimal policy. Finally, numerical examples are given to illustrate the proposed model and indicate that the expected total cost per unit time of our product inspection model is less than that of the last-K inspection policy.
Deep learning has achieved excellent results in various tasks in the field of computer vision, especially in fine-grained visual categorization. It aims to distinguish the subordinate categories of the label-level categories. Due to high intra-class variances and high inter-class similarity, the fine-grained visual categorization is extremely challenging. This paper first briefly introduces and analyzes the related public datasets. After that, some of the latest methods are reviewed. Based on the feature types, the feature processing methods, and the overall structure used in the model, we divide them into three types of methods: methods based on general convolutional neural network (CNN) and strong supervision of parts, methods based on single feature processing, and methods based on multiple feature processing. Most methods of the first type have a relatively simple structure, which is the result of the initial research. The methods of the other two types include models that have special structures and training processes, which are helpful to obtain discriminative features. We conduct a specific analysis on several methods with high accuracy on public datasets. In addition, we support that the focus of the future research is to solve the demand of existing methods for the large amount of the data and the computing power. In terms of technology, the extraction of the subtle feature information with the burgeoning vision transformer (ViT) network is also an important research direction.
The acquisition, analysis, and prediction of the radar cross section (RCS) of a target have extremely important strategic significance in the military. However, the RCS values at all azimuths are hardly accessible for non-cooperative targets, due to the limitations of radar observation azimuth and detection resources. Despite their efforts to predict the azimuth-dimensional RCS value, traditional methods based on statistical theory fails to achieve the desired results because of the azimuth sensitivity of the target RCS. To address this problem, an improved neural basis expansion analysis for interpretable time series forecasting (N-BEATS) network considering the physical model prior is proposed to predict the azimuth-dimensional RCS value accurately. Concretely, physical model-based constraints are imposed on the network by constructing a scattering-center module based on the target scattering-center model. Besides, a superimposed seasonality module is involved to better capture high-frequency information, and augmenting the training set provides complementary information for learning predictions. Extensive simulations and experimental results are provided to validate the effectiveness of the proposed method.
This paper presents a path planning approach for rotary unmanned aerial vehicles (R-UAVs) in a known static rough terrain environment. This approach aims to find collision-free and feasible paths with minimum altitude, length and angle variable rate. First, a three-dimensional (3D) modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs. Considering the length, height and tuning angle of a path, the path planning of R-UAVs is described as a tri-objective optimization problem. Then, an improved multi-objective particle swarm optimization algorithm is developed. To render the algorithm more effective in dealing with this problem, a vibration function is introduced into the collided solutions to improve the algorithm efficiency. Meanwhile, the selection of the global best position is taken into account by the reference point method. Finally, the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine. Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.
Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To solve this problem, an approach of combining elements in different period to build a hybrid array is presented. The results of series of numerical simulation show that multi-periodicity combined element FSS, which are designed using this approach, usually have much weaker grating lobes than the traditional FSS. Furthermore, their frequency response can be well predicted through the properties of their member element FSS. A prediction method for estimating the degree of expected grating lobe energy loss in designing multi-band FSS using this approach is provided.
In a cloud-native era, the Kubernetes-based workflow engine enables workflow containerized execution through the inherent abilities of Kubernetes. However, when encountering continuous workflow requests and unexpected resource request spikes, the engine is limited to the current workflow load information for resource allocation, which lacks the agility and predictability of resource allocation, resulting in over and under-provisioning resources. This mechanism seriously hinders workflow execution efficiency and leads to high resource waste. To overcome these drawbacks, we propose an adaptive resource allocation scheme named adaptive resource allocation scheme (ARAS) for the Kubernetes-based workflow engines. Considering potential future workflow task requests within the current task pod’s lifecycle, the ARAS uses a resource scaling strategy to allocate resources in response to high-concurrency workflow scenarios. The ARAS offers resource discovery, resource evaluation, and allocation functionalities and serves as a key component for our tailored workflow engine (KubeAdaptor). By integrating the ARAS into KubeAdaptor for workflow containerized execution, we demonstrate the practical abilities of KubeAdaptor and the advantages of our ARAS. Compared with the baseline algorithm, experimental evaluation under three distinct workflow arrival patterns shows that ARAS gains time-saving of 9.8% to 40.92% in the average total duration of all workflows, time-saving of 26.4% to 79.86% in the average duration of individual workflow, and an increase of 1% to 16% in centrol processing unit (CPU) and memory resource usage rate.
The problem of scheduling radar dwells in multifunction phased array radar systems is addressed. A novel dwell scheduling algorithm is proposed. The whole scheduling process is based on an online pulse interleaving technique. It takes the system timing and energy constraints into account. In order to adapt the dynamic task load, the algorithm considers both the priorities and deadlines of tasks. The simulation results demonstrate that compared with the conventional adaptive dwell scheduling algorithm, the proposed one can improve the task drop rate and system resource utility effectively.
Moth-flame optimization (MFO) is a novel metaheuristic algorithm inspired by the characteristics of a moth's navigation method in nature called transverse orientation. Like other metaheuristic algorithms, it is easy to fall into local optimum and leads to slow convergence speed. The chaotic map is one of the best methods to improve exploration and exploitation of the metaheuristic algorithms. In the present study, we propose a chaos-enhanced MFO (CMFO) by incorporating chaos maps into the MFO algorithm to enhance its performance. The chaotic map is utilized to initialize the moths' population, handle the boundary overstepping, and tune the distance parameter. The CMFO is benchmarked on three groups of benchmark functions to find out the most efficient one. The performance of the CMFO is also verified by using two real engineering problems. The statistical results clearly demonstrate that the appropriate chaotic map (singer map) embedded in the appropriate component of MFO can significantly improve the performance of MFO.
In the applications of joint control and robot movement, the joint torque estimation has been treated as an effective technique and widely used. Researches are made to analyze the kinematic and compliance model of the robot joint with harmonic drive to acquire high precision torque output. Through analyzing the structures of the harmonic drive and experiment apparatus, a scheme of the proposed joint torque estimation method based on both the dynamic characteristics and unscented Kalman filter (UKF) is designed and built. Based on research and scheme, torque estimation methods in view of only harmonic drive compliance model and compliance model with the Kalman filter are simulated as guidance and reference to promote the research on the torque estimation technique. Finally, a promoted torque estimation method depending on both harmonic drive compliance model and UKF is designed, and simulation results compared with the measurements of a commercial torque sensor, have verified the effectiveness of the proposed method.
Combining beamlet transform with steerable filters, a new edge detection method based on line gradient is proposed. Compared with operators based on point local properties, the edge-detection results with this method achieve higher SNR and position accuracy, and are quite helpful for image registration, object identification, etc. Some edge-detection experiments on optical and SAR images that demonstrate the significant improvement over classical edge operators are also presented. Moreover, the template matching result based on edge information of optical reference image and SAR image also proves the validity of this method.
According to the Doppler sensitive of the phase coded pulse compression signal, a Doppler estimating and compensating method based on phase is put forward to restrain the Doppler sidelobes, raise the signal-to-noise ratio and improve measuring resolution. The compensation method is used to decompose the echo to amplitude and phase, and then compose the new compensated echo by the amplitude and the nonlinear component of the phase. Furthermore the linear component of the phase can be used to estimate the Doppler frequency shift. The computer simulation and the real data processing show that the method has accurately estimated the Doppler frequency shift, successfully restrained the energy leakage on spectrum, greatly increased the echo signal-to-noise ratio and improved the detection performance of the radio system in both time domain and frequency domain.
Detecting the forgery parts from a double compressed image is very important and urgent work for blind authentication. A very simple and efficient method for accomplishing the task is proposed. Firstly, the probabilistic model with periodic effects in double quantization is analyzed, and the probability of quantized DCT coefficients in each block is calculated over the entire image. Secondly, the posteriori probability of each block is computed according to Bayesian theory and the results mentioned in first part. Then the mean and variance of the posteriori probability are to be used for judging whether the target block is tampered. Finally, the mathematical morphology operations are performed to reduce the false alarm probability. Experimental results show that the method can exactly locate the doctored part, and through the experiment it is also found that for detecting the tampered regions, the higher the second compression quality is, the more exact the detection efficiency is.
A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is classified as two subsets of dominant factors and adjusting factors respectively. Firstly, the dominant factors are used to determine the probabilities of three behavior modes. The basic probability and its interval of human error for each behavior mode are given. Secondly, the basic probability and its interval are modified by the adjusting factors, and the total probability of human error is calculated by a total probability formula. Finally, a simple example is introduced, and the consistency and validity of the presented approach are illustrated.
The realization of the parameter estimation of chirp signals using the fractional Fourier transform (FRFT) is based on the assumption that the sampling duration of practical observed signals would be equal to the time duration of chirp signals contained in the former. However, in many actual circumstances, this assumption seems unreasonable. On the basis of analyzing the practical signal form, this paper derives the estimation error of the existing parameter estimation method and then proposes a novel and universal parameter estimation algorithm. Furthermore, the proposed algorithm is developed which allows the estimation of the practical observed Gaussian windowed chirp signal. Simulation results show that the new algorithm works well.
With the development of global position system (GPS), wireless technology and location aware services, it is possible to collect a large quantity of trajectory data. In the field of data mining for moving objects, the problem of anomaly detection is a hot topic. Based on the development of anomalous trajectory detection of moving objects, this paper introduces the classical trajectory outlier detection (TRAOD) algorithm, and then proposes a density-based trajectory outlier detection (DBTOD) algorithm, which compensates the disadvantages of the TRAOD algorithm that it is unable to detect anomalous defects when the trajectory is local and dense. The results of employing the proposed algorithm to Elk1993 and Deer1995 datasets are also presented, which show the effectiveness of the algorithm.
For multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, a joint timing synchronization and frequency offset acquisition algorithm based on fractional Fourier transform (FRFT) is proposed. The linear frequency modulation signals superimposed on the data signals are used as the training signals. By performing FRFT on the received signals and searching the peak value of the FRFT results, the receiver can realize timing synchronization and frequency offset acquisition simultaneously. Compared with the existing methods, the proposed algorithm can provide better timing synchronization performance and larger frequency offset acquisition range even under multi-path channels with low signal to noise ratio. Theoretical analysis and simulation results prove this point.
A proper weapon system is very important for a national defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multipleattribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to analyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.
Cloud manufacturing is a specific implementation form of the "Internet + manufacturing" strategy. Why and how to develop cloud manufacturing platform (CMP), however, remains the key concern of both platform operators and users. A microscopic model is proposed to investigate advantages and diffusion forces of CMP through exploration of its diffusion process and mechanism. Specifically, a three-stage basic evolution process of CMP is innovatively proposed. Then, based on this basic process, a more complex CMP evolution model has been established in virtue of complex network theory, with five diffusion forces identified. Thereafter, simulations on CMP diffusion have been conducted. The results indicate that, CMP possesses better resource utilization, user satisfaction, and enterprise utility. Results of simulation on impacts of different diffusion forces show that both the time required for CMP to reach an equilibrium state and the final network size are affected simultaneously by the five diffusion forces. All these analyses indicate that CMP could create an open online cooperation environment and turns out to be an effective implementation of the "Internet + manufacturing" strategy.
Enterprise architecture (EA) development is always a superior way to address business-IT alignment (BITA) issue. However, most EA design frameworks are inadequate to allocate IT resources, which is an important metric of BITA maturity. Under this situation, the idea of IT resource allocation is combined with the EA design process, in order to extend prior EA research on BITA and to demonstrate EAos capability of implementing IT governance. As an effective resource allocation method, portfolio decision analysis (PDA) is used to align business functions of business architecture and applications of system architecture. Furthermore, this paper exhibits an illustrative case with the proposed framework.
Low Earth orbit (LEO) satellite networks exhibit distinct characteristics, e.g., limited resources of individual satellite nodes and dynamic network topology, which have brought many challenges for routing algorithms. To satisfy quality of service (QoS) requirements of various users, it is critical to research efficient routing strategies to fully utilize satellite resources. This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks, which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources. An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm. Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.
To solve discrete optimization difficulty of the spectrum allocation problem, a membrane-inspired quantum shuffled frog leaping (MQSFL) algorithm is proposed. The proposed MQSFL algorithm applies the theory of membrane computing and quantum computing to the shuffled frog leaping algorithm, which is an effective discrete optimization algorithm. Then the proposed MQSFL algorithm is used to solve the spectrum allocation problem of cognitive radio systems. By hybridizing the quantum frog colony optimization and membrane computing, the quantum state and observation state of the quantum frogs can be well evolved within the membrane structure. The novel spectrum allocation algorithm can search the global optimal solution within a reasonable computation time. Simulation results for three utility functions of a cognitive radio system are provided to show that the MQSFL spectrum allocation method is superior to some previous spectrum allocation algorithms based on intelligence computing.
Time-limited dispatching (TLD) analysis of the full authority digital engine control (FADEC) systems is an important part of the aircraft system safety analysis and a necessary task for the certification of commercial aircraft and aeroengines. In the time limited dispatch guidance document ARP5107B, a single-fault Markov model (MM) approach is proposed for TLD analysis. However, ARP5107B also requires that the loss of thrust control (LOTC) rate error calculated by applying the single-fault MM must be less than 5% when performing airworthiness certification. Firstly, the sources of accuracy errors in three kinds of MM are analyzed and specified through a case study of the general FADEC system, and secondly a two-fault MM considering maintenance policy is established through analyzing and calculating the expected repair time when two related faults happen. Finally, a specific FADEC system is given to study on the influence factors of accuracy error in the single-fault MM, and the results show that the accuracy error of the single-fault MM decreases with the increase of short or long prescribed dispatch time, and the range values of short time (ST) and long time (LT) are determined to satisfy the requirement of accuracy error within 5%.
This paper considers the parameters and reliability characteristics estimation problem of the generalized Rayleigh distribution under progressively Type-Ⅱ censoring with random removals, that is, the number of units removed at each failure time follows the binomial distribution. The maximum likelihood estimation and the Bayesian estimation are derived. In the meanwhile, through a great quantity of Monte Carlo simulation experiments we have studied different hyperparameters as well as symmetric and asymmetric loss functions in the Bayesian estimation procedure. A real industrial case is presented to justify and illustrate the proposed methods. We also investigate the expected experimentation time and discuss the influence of the parameters on the termination point to complete the censoring test.
An efficient and real-time simulation method is proposed for the dynamic electromagnetic characteristics of cluster targets to meet the requirements of engineering practical applications. First, the coordinate transformation method is used to establish a geometric model of the observation scene, which is described by the azimuth angles and elevation angles of the radar in the target reference frame and the attitude angles of the target in the radar reference frame. Then, an approach for dynamic electromagnetic scattering simulation is proposed. Finally, a fast-computing method based on sparsity in the time domain, space domain, and frequency domain is proposed. The method analyzes the sparsity-based dynamic scattering characteristic of the typical cluster targets. The error between the sparsity-based method and the benchmark is small, proving the effectiveness of the proposed method.
Model-based system-of-systems (SOS) engineering (MBSoSE) is becoming a promising solution for the design of SoS with increasing complexity. However, bridging the models from the design phase to the simulation phase poses significant challenges and requires an integrated approach. In this study, a unified requirement modeling approach is proposed based on unified architecture framework (UAF). Theoretical models are proposed which compose formalized descriptions from both top-down and bottom-up perspectives. Based on the description, the UAF profile is proposed to represent the SoS mission and constituent systems (CS) goal. Moreover, the agent-based simulation information is also described based on the overview, design concepts, and details (ODD) protocol as the complement part of the SoS profile, which can be transformed into different simulation platforms based on the eXtensible markup language (XML) technology and model-to-text method. In this way, the design of the SoS is simulated automatically in the early design stage. Finally, the method is implemented and an example is given to illustrate the whole process.
Large-scale and diverse businesses based on the cloud computing platform bring the heavy network traffic to cloud data centers. However, the unbalanced workload of cloud data center network easily leads to the network congestion, the low resource utilization rate, the long delay, the low reliability, and the low throughput. In order to improve the utilization efficiency and the quality of services (QoS) of cloud system, especially to solve the problem of network congestion, we propose MTSS, a multi-path traffic scheduling mechanism based on software defined networking (SDN). MTSS utilizes the data flow scheduling flexibility of SDN and the multi-path feature of the fat-tree structure to improve the traffic balance of the cloud data center network. A heuristic traffic balancing algorithm is presented for MTSS, which periodically monitors the network link and dynamically adjusts the traffic on the heavy link to achieve programmable data forwarding and load balancing. The experimental results show that MTSS outperforms equal-cost multi-path protocol (ECMP), by effectively reducing the packet loss rate and delay. In addition, MTSS improves the utilization efficiency, the reliability and the throughput rate of the cloud data center network.
According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network (CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3 – 4 orders of magnitude, and has more powerful target detection performance.
Nonlinearity and implicitness are common degradation features of the stochastic degradation equipment for prognostics. These features have an uncertain effect on the remaining useful life (RUL) prediction of the equipment. The current data-driven RUL prediction method has not systematically studied the nonlinear hidden degradation modeling and the RUL distribution function. This paper uses the nonlinear Wiener process to build a dual nonlinear implicit degradation model. Based on the historical measured data of similar equipment, the maximum likelihood estimation algorithm is used to estimate the fixed coefficients and the prior distribution of a random coefficient. Using the on-site measured data of the target equipment, the posterior distribution of a random coefficient and actual degradation state are step-by-step updated based on Bayesian inference and the extended Kalman filtering algorithm. The analytical form of the RUL distribution function is derived based on the first hitting time distribution. Combined with the two case studies, the proposed method is verified to have certain advantages over the existing methods in the accuracy of prediction.
The unmanned aerial vehicle (UAV) swarm technology is one of the research hotspots in recent years. With the continuous improvement of autonomous intelligence of UAV, the swarm technology of UAV will become one of the main trends of UAV development in the future. This paper studies the behavior decision-making process of UAV swarm rendezvous task based on the double deep Q network (DDQN) algorithm. We design a guided reward function to effectively solve the problem of algorithm convergence caused by the sparse return problem in deep reinforcement learning (DRL) for the long period task. We also propose the concept of temporary storage area, optimizing the memory playback unit of the traditional DDQN algorithm, improving the convergence speed of the algorithm, and speeding up the training process of the algorithm. Different from traditional task environment, this paper establishes a continuous state-space task environment model to improve the authentication process of UAV task environment. Based on the DDQN algorithm, the collaborative tasks of UAV swarm in different task scenarios are trained. The experimental results validate that the DDQN algorithm is efficient in terms of training UAV swarm to complete the given collaborative tasks while meeting the requirements of UAV swarm for centralization and autonomy, and improving the intelligence of UAV swarm collaborative task execution. The simulation results show that after training, the proposed UAV swarm can carry out the rendezvous task well, and the success rate of the mission reaches 90%.
To ensure safe flight of multiple fixed-wing unmanned aerial vehicles (UAVs) formation, considering trajectory planning and formation control together, a leader trajectory planning method based on the sparse A* algorithm is introduced. Firstly, a formation controller based on prescribed performance theory is designed to control the transient and steady formation configuration, as well as the formation forming time, which not only can form the designated formation configuration but also can guarantee collision avoidance and terrain avoidance theoretically. Next, considering the constraints caused by formation controller on trajectory planning such as the safe distance, turn angle and step length, as well as the constraint of formation shape, a leader trajectory planning method based on sparse A* algorithm is proposed. Simulation results show that the UAV formation can arrive at the destination safely with a short trajectory no matter keeping the formation or encountering formation transformation.
Architecture framework has become an effective method recently to describe the system of systems (SoS) architecture, such as the United States (US) Department of Defense Architecture Framework Version 2.0 (DoDAF2.0). As a viewpoint in DoDAF2.0, the operational viewpoint (OV) describes operational activities, nodes, and resource flows. The OV models are important for SoS architecture development. However, as the SoS complexity increases, constructing OV models with traditional methods exposes shortcomings, such as inefficient data collection and low modeling standards. Therefore, we propose an intelligent modeling method for five OV models, including operational resource flow OV-2, organizational relationships OV-4, operational activity hierarchy OV-5a, operational activities model OV-5b, and operational activity sequences OV-6c. The main idea of the method is to extract OV architecture data from text and generate interoperable OV models. First, we construct the OV meta model based on the DoDAF2.0 meta model (DM2). Second, OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field (BiLSTM-CRF) model. And OV architecture relationships are collected with relationship extraction rules. Finally, we define the generation rules for OV models and develop an OV modeling tool. We use unmanned surface vehicles (USV) swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method.
A novel multi-view 3D face registration method based on principal axis analysis and labeled regions orientation called local orientation registration is proposed. The pre-registration is achieved by transforming the multi-pose models to the standard frontal model’s reference frame using the principal axis analysis algorithm. Some significant feature regions, such as inner and outer canthus, nose tip vertices, are then located by using geometrical distribution characteristics. These regions are subsequently employed to compute the conversion parameters using the improved iterative closest point algorithm, and the optimal parameters are applied to complete the final registration. Experimental results implemented on the proper database demonstrate that the proposed method significantly outperforms others by achieving 1.249 and 1.910 mean root-mean-square measure with slight and large view variation models, respectively.
This paper introduces a fault-tolerant control (FTC) design for a faulty fixed-wing unmanned aerial vehicle (UAV). To constrain tracking errors against actuator faults, error constraint inequalities are first transformed to a new set of variables based on prescribed performance functions. Then, the commonly used and powerful proportional-integral-derivative (PID) control concept is employed to filter the transformed error variables. To handle the fault-induced nonlinear terms, a composite learning algorithm consisting of neural network and disturbance observer is incorporated for increasing flight safety. It is shown by Lyapunov stability analysis that the tracking errors are strictly constrained within the specified error bounds. Experimental results are presented to verify the feasibility of the developed FTC scheme.