30 Most Down Articles
Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

In last 2 years
Please wait a minute...
For Selected: Toggle Thumbnails
Adaptive resource allocation for workflow containerization on Kubernetes
Chenggang SHAN, Chuge WU, Yuanqing XIA, Zehua GUO, Danyang LIU, Jinhui ZHANG
Journal of Systems Engineering and Electronics    2023, 34 (3): 723-743.   DOI: 10.23919/JSEE.2023.000073
Abstract228)   HTML1)    PDF(pc) (7442KB)(478)       Save

In a cloud-native era, the Kubernetes-based workflow engine enables workflow containerized execution through the inherent abilities of Kubernetes. However, when encountering continuous workflow requests and unexpected resource request spikes, the engine is limited to the current workflow load information for resource allocation, which lacks the agility and predictability of resource allocation, resulting in over and under-provisioning resources. This mechanism seriously hinders workflow execution efficiency and leads to high resource waste. To overcome these drawbacks, we propose an adaptive resource allocation scheme named adaptive resource allocation scheme (ARAS) for the Kubernetes-based workflow engines. Considering potential future workflow task requests within the current task pod’s lifecycle, the ARAS uses a resource scaling strategy to allocate resources in response to high-concurrency workflow scenarios. The ARAS offers resource discovery, resource evaluation, and allocation functionalities and serves as a key component for our tailored workflow engine (KubeAdaptor). By integrating the ARAS into KubeAdaptor for workflow containerized execution, we demonstrate the practical abilities of KubeAdaptor and the advantages of our ARAS. Compared with the baseline algorithm, experimental evaluation under three distinct workflow arrival patterns shows that ARAS gains time-saving of 9.8% to 40.92% in the average total duration of all workflows, time-saving of 26.4% to 79.86% in the average duration of individual workflow, and an increase of 1% to 16% in centrol processing unit (CPU) and memory resource usage rate.

Table and Figures | Reference | Related Articles | Metrics
Complex systems and network science: a survey
Kewei YANG, Jichao LI, Maidi LIU, Tianyang LEI, Xueming XU, Hongqian WU, Jiaping CAO, Gaoxin QI
Journal of Systems Engineering and Electronics    2023, 34 (3): 543-573.   DOI: 10.23919/JSEE.2023.000080
Abstract448)   HTML27)    PDF(pc) (8641KB)(382)       Save

Complex systems widely exist in nature and human society. There are complex interactions between system elements in a complex system, and systems show complex features at the macro level, such as emergence, self-organization, uncertainty, and dynamics. These complex features make it difficult to understand the internal operation mechanism of complex systems. Networked modeling of complex systems is a favorable means of understanding complex systems. It not only represents complex interactions but also reflects essential attributes of complex systems. This paper summarizes the research progress of complex systems modeling and analysis from the perspective of network science, including networked modeling, vital node analysis, network invulnerability analysis, network disintegration analysis, resilience analysis, complex network link prediction, and the attacker-defender game in complex networks. In addition, this paper presents some points of view on the trend and focus of future research on network analysis of complex systems.

Table and Figures | Reference | Related Articles | Metrics
Two-layer formation-containment fault-tolerant control of fixed-wing UAV swarm for dynamic target tracking
Boyu QIN, Dong ZHANG, Shuo TANG, Yang XU
Journal of Systems Engineering and Electronics    2023, 34 (6): 1375-1396.   DOI: 10.23919/JSEE.2023.000153
Abstract341)   HTML26)    PDF(pc) (22266KB)(343)       Save

This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle (UAV) swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs ’ actuator and sensor. The fixed-wing UAV swarm under consideration is organized as a “multi-leader-multi-follower” structure, in which only several leaders can obtain the dynamic target information while others only receive the neighbors’ information through the communication network. To simultaneously realize the formation, containment, and dynamic target tracking, a two-layer control framework is adopted to decouple the problem into two subproblems: reference trajectory generation and trajectory tracking. In the upper layer, a distributed finite-time estimator (DFTE) is proposed to generate each UAV ’s reference trajectory in accordance with the control objective. Subsequently, a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer, where a novel adaptive extended super-twisting (AESTW) algorithm with a finite-time extended state observer (FTESO) is involved in solving the robust trajectory tracking control problem under model uncertainties, actuator, and sensor faults. The proposed controller simultaneously guarantees rapidness and enhances the system ’s robustness with fewer chattering effects. Finally, corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme.

Table and Figures | Reference | Related Articles | Metrics
A survey on joint-operation application for unmanned swarm formations under a complex confrontation environment
Jialong ZHANG, Kun HAN, Pu ZHANG, Zhongxi HOU, Lei YE
Journal of Systems Engineering and Electronics    2023, 34 (6): 1432-1446.   DOI: 10.23919/JSEE.2023.000162
Abstract367)   HTML26)    PDF(pc) (4415KB)(309)       Save

With the rapid development of informatization, autonomy and intelligence, unmanned swarm formation intelligent operations will become the main combat mode of future wars. Typical unmanned swarm formations such as ground-based directed energy weapon formations, space-based kinetic energy weapon formations, and sea-based carrier-based formations have become the trump card for winning future wars. In a complex confrontation environment, these sophisticated weapon formation systems can precisely strike mobile threat group targets, making them extreme deterrents in joint combat applications. Based on this, first, this paper provides a comprehensive summary of the outstanding advantages, strategic position and combat style of unmanned clusters in joint warfare to highlight their important position in future warfare. Second, a detailed analysis of the technological breakthroughs in four key areas, situational awareness, heterogeneous coordination, mixed combat, and intelligent assessment of typical unmanned aerial vehicle (UAV) swarms in joint warfare, is presented. An in-depth analysis of the UAV swarm communication networking operating mechanism during joint warfare is provided to lay the theoretical foundation for subsequent cooperative tracking and control. Then, an in-depth analysis of the shut-in technology requirements of UAV clusters in joint warfare is provided to lay a theoretical foundation for subsequent cooperative tracking control. Finally, the technical requirements of UAV clusters in joint warfare are analysed in depth so the key technologies can form a closed-loop kill chain system and provide theoretical references for the study of intelligent command operations.

Table and Figures | Reference | Related Articles | Metrics
Mission reliability modeling and evaluation for reconfigurable unmanned weapon system-of-systems based on effective operation loop
Zhiwei CHEN, Ziming ZHOU, Luogeng ZHANG, Chaowei CUI, Jilong ZHONG
Journal of Systems Engineering and Electronics    2023, 34 (3): 588-597.   DOI: 10.23919/JSEE.2023.000082
Abstract260)   HTML16)    PDF(pc) (1986KB)(302)       Save

The concept of unmanned weapon system-of-systems (UWSoS) involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission. The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission. However, issues with heterogeneity, cooperation between systems, and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods. This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration. First, we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints. Then, we propose an effective operation-loop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline. Moreover, a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration, revealing the evolution law of the effective operation loop and mission reliability. Finally, a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods. The mission reliability is achieved by considering external shocks, which can serve as a reference for evaluating and improving the effectiveness of UWSoS.

Table and Figures | Reference | Related Articles | Metrics
Delay-optimal multi-satellite collaborative computation offloading supported by OISL in LEO satellite network
Tingting ZHANG, Zijian GUO, Bin LI, Yuan FENG, Qi FU, Mingyu HU, Yunbo QU
Journal of Systems Engineering and Electronics    2024, 35 (4): 805-814.   DOI: 10.23919/JSEE.2024.000037
Abstract323)   HTML66)    PDF(pc) (1398KB)(280)       Save

By deploying the ubiquitous and reliable coverage of low Earth orbit (LEO) satellite networks using optical inter satellite link (OISL), computation offloading services can be provided for any users without proximal servers, while the resource limitation of both computation and storage on satellites is the important factor affecting the maximum task completion time. In this paper, we study a delay-optimal multi-satellite collaborative computation offloading scheme that allows satellites to actively migrate tasks among themselves by employing the high-speed OISLs, such that tasks with long queuing delay will be served as quickly as possible by utilizing idle computation resources in the neighborhood. To satisfy the delay requirement of delay-sensitive task, we first propose a deadline-aware task scheduling scheme in which a priority model is constructed to sort the order of tasks being served based on its deadline, and then a delay-optimal collaborative offloading scheme is derived such that the tasks which cannot be completed locally can be migrated to other idle satellites. Simulation results demonstrate the effectiveness of our multi-satellite collaborative computation offloading strategy in reducing task complement time and improving resource utilization of the LEO satellite network.

Table and Figures | Reference | Related Articles | Metrics
Overview of radar detection methods for low altitude targets in marine environments
Yong YANG, Boyu YANG
Journal of Systems Engineering and Electronics    2024, 35 (1): 1-13.   DOI: 10.23919/JSEE.2024.000026
Abstract448)   HTML57)    PDF(pc) (4486KB)(273)       Save

In this paper, a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented, focusing on the challenges posed by sea clutter and multipath scattering. The performance of the radar detection methods under sea clutter, multipath, and combined conditions is categorized and summarized, and future research directions are outlined to enhance radar detection performance for low–altitude targets in maritime environments.

Table and Figures | Reference | Related Articles | Metrics
Special Section on Autonomous Decision and Cooperative Control of UAV Swarms
Wenwu YU, Wei REN, Dong ZHANG
Journal of Systems Engineering and Electronics    0, (): 0-0.  
Abstract226)   HTML37)    PDF(pc) (734KB)(259)       Save
Reference | Related Articles | Metrics
Multicriteria game approach to air-to-air combat tactical decisions for multiple UAVs
Ruhao JIANG, He LUO, Yingying MA, Guoqiang WANG
Journal of Systems Engineering and Electronics    2023, 34 (6): 1447-1464.   DOI: 10.23919/JSEE.2023.000115
Abstract259)   HTML10)    PDF(pc) (7388KB)(235)       Save

Air-to-air combat tactical decisions for multiple unmanned aerial vehicles (ACTDMU) are a key decision-making step in beyond visual range combat. Complex influencing factors, strong antagonism and real-time requirements need to be considered in the ACTDMU problem. In this paper, we propose a multicriteria game approach to ACTDMU. This approach consists of a multicriteria game model and a Pareto Nash equilibrium algorithm. In this model, we form the strategy profiles for the integration of air-to-air combat tactics and weapon target assignment strategies by considering the correlation between them, and we design the vector payoff functions based on predominance factors. We propose a algorithm of Pareto Nash equilibrium based on preference relations using threshold constraints (PNE-PRTC), and we prove that the solutions obtained by this algorithm are refinements of Pareto Nash equilibrium solutions. The numerical experiments indicate that PNE-PRTC algorithm is considerably faster than the baseline algorithms and the performance is better. Especially on large-scale instances, the Pareto Nash equilibrium solutions can be calculated by PNE-PRTC algorithm at the second level. The simulation experiments show that the multicriteria game approach is more effective than one-side decision approaches such as multiple-attribute decision-making and randomly chosen decisions.

Table and Figures | Reference | Related Articles | Metrics
Role-based Bayesian decision framework for autonomous unmanned systems
Weijian PANG, Xinyi MA, Xueming LIANG, Xiaogang LIU, Erwa DONG
Journal of Systems Engineering and Electronics    2023, 34 (6): 1397-1408.   DOI: 10.23919/JSEE.2023.000114
Abstract200)   HTML9)    PDF(pc) (6947KB)(233)       Save

In the process of performing a task, autonomous unmanned systems face the problem of scene changing, which requires the ability of real-time decision-making under dynamically changing scenes. Therefore, taking the unmanned system coordinative region control operation as an example, this paper combines knowledge representation with probabilistic decision-making and proposes a role-based Bayesian decision model for autonomous unmanned systems that integrates scene cognition and individual preferences. Firstly, according to utility value decision theory, the role-based utility value decision model is proposed to realize task coordination according to the preference of the role that individual is assigned. Then, multi-entity Bayesian network is introduced for situation assessment, by which scenes and their uncertainty related to the operation are semantically described, so that the unmanned systems can conduct situation awareness in a set of scenes with uncertainty. Finally, the effectiveness of the proposed method is verified in a virtual task scenario. This research has important reference value for realizing scene cognition, improving cooperative decision-making ability under dynamic scenes, and achieving swarm level autonomy of unmanned systems.

Table and Figures | Reference | Related Articles | Metrics
A spawning particle filter for defocused moving target detection in GNSS-based passive radar
Hongcheng ZENG, Jiadong DENG, Pengbo WANG, Xinkai ZHOU, Wei YANG, Jie CHEN
Journal of Systems Engineering and Electronics    2023, 34 (5): 1085-1100.   DOI: 10.23919/JSEE.2023.000033
Abstract318)   HTML23)    PDF(pc) (7015KB)(223)       Save

Global Navigation Satellite System (GNSS)-based passive radar (GBPR) has been widely used in remote sensing applications. However, for moving target detection (MTD), the quadratic phase error (QPE) introduced by the non-cooperative target motion is usually difficult to be compensated, as the low power level of the GBPR echo signal renders the estimation of the Doppler rate less effective. Consequently, the moving target in GBPR image is usually defocused, which aggravates the difficulty of target detection even further. In this paper, a spawning particle filter (SPF) is proposed for defocused MTD. Firstly, the measurement model and the likelihood ratio function (LRF) of the defocused point-like target image are deduced. Then, a spawning particle set is generated for subsequent target detection, with reference to traditional particles in particle filter (PF) as their parent. After that, based on the PF estimator, the SPF algorithm and its sequential Monte Carlo (SMC) implementation are proposed with a novel amplitude estimation method to decrease the target state dimension. Finally, the effectiveness of the proposed SPF is demonstrated by numerical simulations and preliminary experimental results, showing that the target range and Doppler can be estimated accurately.

Table and Figures | Reference | Related Articles | Metrics
Recognition of dynamically varying PRI modulation via deep learning and recurrence plot
Pengcheng WANG, Weisong LIU, Zheng LIU
Journal of Systems Engineering and Electronics    2023, 34 (4): 815-826.   DOI: 10.23919/JSEE.2022.000071
Abstract165)   HTML24)    PDF(pc) (2584KB)(201)       Save

Recognition of pulse repetition interval (PRI) modulation is a fundamental task in the interpretation of radar intentions. However, the existing PRI modulation recognition methods mainly focus on single-label classification of PRI sequences. The prerequisite for the effectiveness of these methods is that the PRI sequences are perfectly divided according to different modulation types before identification, while the actual situation is that radar pulses reach the receiver continuously, and there is no completely reliable method to achieve this division in the case of non-cooperative reception. Based on the above actual needs, this paper implements an algorithm based on the recurrence plot technique and the multi-target detection model, which does not need to divide the PRI sequence in advance. Compared with the sliding window method, it can more effectively realize the recognition of the dynamically varying PRI modulation.

Table and Figures | Reference | Related Articles | Metrics
Design and implementation of code acquisition using sparse Fourier transform
Chen ZHANG, Jian WANG, Guangteng FAN, Shiwei TIAN
Journal of Systems Engineering and Electronics    2024, 35 (5): 1063-1072.   DOI: 10.23919/JSEE.2024.000015
Abstract309)   HTML74)    PDF(pc) (7738KB)(187)       Save

Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver. To reduce the computational complexity and latency of code acquisition, this paper proposes an efficient scheme employing sparse Fourier transform (SFT) and the relevant hardware architecture for field programmable gate array (FPGA) and application-specific integrated circuit (ASIC) implementation. Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure. Compared with the existing code acquisition approaches, it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.

Table and Figures | Reference | Related Articles | Metrics
A goal-based approach for modeling and simulation of different types of system-of-systems
Yimin FENG, Chenchu ZHOU, Qiang ZOU, Yusheng LIU, Jiyuan LYU, Xinfeng WU
Journal of Systems Engineering and Electronics    2023, 34 (3): 627-640.   DOI: 10.23919/JSEE.2023.000084
Abstract232)   HTML4)    PDF(pc) (1326KB)(183)       Save

A system of systems (SoS) composes a set of independent constituent systems (CSs), where the degree of authority to control the independence of CSs varies, depending on different SoS types. Key researchers describe four SoS types with descending levels of central authority: directed, acknowledged, collaborative and virtual. Although the definitions have been recognized in SoS engineering, what is challenging is the difficulty of translating these definitions into models and simulation environments. Thus, we provide a goal-based method including a mathematical baseline to translate these definitions into more effective agent-based modeling and simulations. First, we construct the theoretical models of CS and SoS. Based on the theoretical models, we analyze the degree of authority influenced by SoS characteristics. Next, we propose a definition of SoS types by quantitatively explaining the degree of authority. Finally, we recognize the differences between acknowledged SoS and collaborative SoS using a migrating waterfowl flock by an agent-based model (ABM) simulation. This paper contributes to the SoS body of knowledge by increasing our understanding of the degree of authority in an SoS, so we may identify suitable SoS types to achieve SoS goals by modeling and simulation.

Table and Figures | Reference | Related Articles | Metrics
Disparity estimation for multi-scale multi-sensor fusion
Guoliang SUN, Shanshan PEI, Qian LONG, Sifa ZHENG, Rui YANG
Journal of Systems Engineering and Electronics    2024, 35 (2): 259-274.   DOI: 10.23919/JSEE.2023.000101
Abstract246)   HTML35)    PDF(pc) (9297KB)(181)       Save

The perception module of advanced driver assistance systems plays a vital role. Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer. This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme. A binocular stereo vision sensor composed of two cameras and a light deterction and ranging (LiDAR) sensor is used to jointly perceive the environment, and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map. This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors. Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.

Table and Figures | Reference | Related Articles | Metrics
Combat situation suppression of multiple UAVs based on spatiotemporal cooperative path planning
Lei HU, Guoxing YI, Yi NAN, Hao WANG
Journal of Systems Engineering and Electronics    2023, 34 (5): 1191-1210.   DOI: 10.23919/JSEE.2023.000119
Abstract210)   HTML8)    PDF(pc) (3501KB)(177)       Save

Aiming at the suppression of enemy air defense (SEAD) task under the complex and complicated combat scenario, the spatiotemporal cooperative path planning methods are studied in this paper. The major research contents include optimal path points generation, path smoothing and cooperative rendezvous. In the path points generation part, the path points availability testing algorithm and the path segments availability testing algorithm are designed, on this foundation, the swarm intelligence-based path point generation algorithm is utilized to generate the optimal path. In the path smoothing part, taking terminal attack angle constraint and maneuverability constraint into consideration, the Dubins curve is introduced to smooth the path segments. In cooperative rendezvous part, we take estimated time of arrival requirement constraint and flight speed range constraint into consideration, the speed control strategy and flight path control strategy are introduced, further, the decoupling scheme of the circling maneuver and detouring maneuver is designed, in this case, the maneuver ways, maneuver point, maneuver times, maneuver path and flight speed are determined. Finally, the simulation experiments are conducted and the acquired results reveal that the time-space cooperation of multiple unmanned aeriel vehicles (UAVs) is effectively realized, in this way, the combat situation suppression against the enemy can be realized in SEAD scenarios.

Table and Figures | Reference | Related Articles | Metrics
Low rank optimization for efficient deep learning: making a balance between compact architecture and fast training
Xinwei OU, Zhangxin CHEN, Ce ZHU, Yipeng LIU
Journal of Systems Engineering and Electronics    2024, 35 (3): 509-531.   DOI: 10.23919/JSEE.2023.000159
Abstract251)   HTML51)    PDF(pc) (5743KB)(165)       Save

Deep neural networks (DNNs) have achieved great success in many data processing applications. However, high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices, and it is not environmental-friendly with much power cost. In this paper, we focus on low-rank optimization for efficient deep learning techniques. In the space domain, DNNs are compressed by low rank approximation of the network parameters, which directly reduces the storage requirement with a smaller number of network parameters. In the time domain, the network parameters can be trained in a few subspaces, which enables efficient training for fast convergence. The model compression in the spatial domain is summarized into three categories as pre-train, pre-set, and compression-aware methods, respectively. With a series of integrable techniques discussed, such as sparse pruning, quantization, and entropy coding, we can ensemble them in an integration framework with lower computational complexity and storage. In addition to summary of recent technical advances, we have two findings for motivating future works. One is that the effective rank, derived from the Shannon entropy of the normalized singular values, outperforms other conventional sparse measures such as the $ \ell_1 $ norm for network compression. The other is a spatial and temporal balance for tensorized neural networks. For accelerating the training of tensorized neural networks, it is crucial to leverage redundancy for both model compression and subspace training.

Table and Figures | Reference | Related Articles | Metrics
Real-time UAV path planning based on LSTM network
Jiandong ZHANG, Yukun GUO, Lihui ZHENG, Qiming YANG, Guoqing SHI, Yong WU
Journal of Systems Engineering and Electronics    2024, 35 (2): 374-385.   DOI: 10.23919/JSEE.2023.000157
Abstract301)   HTML12)    PDF(pc) (2150KB)(165)       Save

To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle (UAV) real-time path planning problem, a real-time UAV path planning algorithm based on long short-term memory (RPP-LSTM) network is proposed, which combines the memory characteristics of recurrent neural network (RNN) and the deep reinforcement learning algorithm. LSTM networks are used in this algorithm as Q-value networks for the deep Q network (DQN) algorithm, which makes the decision of the Q-value network has some memory. Thanks to LSTM network, the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment. Besides, the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning, so that the UAV can more reasonably perform path planning. Simulation verification shows that compared with the traditional feed-forward neural network (FNN) based UAV autonomous path planning algorithm, the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.

Table and Figures | Reference | Related Articles | Metrics
CONTENTS
Journal of Systems Engineering and Electronics    2024, 35 (5): 0-.  
Abstract76)      PDF(pc) (1746KB)(161)       Save
Related Articles | Metrics
An evaluation method of contribution rate based on fuzzy Bayesian networks for equipment system-of-systems architecture
Renjie XU, Xin LIU, Donghao CUI, Jian XIE, Lin GONG
Journal of Systems Engineering and Electronics    2023, 34 (3): 574-587.   DOI: 10.23919/JSEE.2023.000081
Abstract295)   HTML16)    PDF(pc) (5118KB)(159)       Save

The contribution rate of equipment system-of-systems architecture (ESoSA) is an important index to evaluate the equipment update, development, and architecture optimization. Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems (ESoS), and the Bayesian network is an effective tool to solve the uncertain information, a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network (FBN) is proposed. Firstly, based on the operation loop theory, an ESoSA is constructed considering three aspects: reconnaissance equipment, decision equipment, and strike equipment. Next, the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information. Furthermore, the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA, and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established. Finally, the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA. Compared with traditional methods, the evaluation method based on FBN takes various failure states of equipment into consideration, is free of acquiring accurate probability of traditional equipment failure, and models the uncertainty of the relationship between equipment. The proposed method not only supplements and improves the ESoSA contribution rate assessment method, but also broadens the application scope of the Bayesian network.

Table and Figures | Reference | Related Articles | Metrics
High performance receiving and processing technology in satellite beam hopping communication
Shenghua ZHAI, Tengfei HUI, Xianfeng GONG, Zehui ZHANG, Xiaozheng GAO, Kai YANG
Journal of Systems Engineering and Electronics    2024, 35 (4): 815-828.   DOI: 10.23919/JSEE.2024.000076
Abstract260)   HTML17)    PDF(pc) (8828KB)(158)       Save

Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility. However, beam hopping causes the traditional continuous time-division multiplexing signal in the forward downlink to become a burst signal, satellite terminal receivers need to solve multiple key issues such as burst signal rapid synchronization and high-performance reception. Firstly, this paper analyzes the key issues of burst communication for traffic signals in beam hopping systems, and then compares and studies typical carrier synchronization algorithms for burst signals. Secondly, combining the requirements of beam-hopping communication systems for efficient burst and low signal-to-noise ratio reception of downlink signals in forward links, a decoding assisted bidirectional variable parameter iterative carrier synchronization technique is proposed, which introduces the idea of iterative processing into carrier synchronization. Aiming at the technical characteristics of communication signal carrier synchronization, a new technical approach of bidirectional variable parameter iteration is adopted, breaking through the traditional understanding that loop structures cannot adapt to low signal-to-noise ratio burst demodulation. Finally, combining the DVB-S2X standard physical layer frame format used in high throughput satellite communication systems, the research and performance simulation are conducted. The results show that the new technology proposed in this paper can significantly shorten the carrier synchronization time of burst signals, achieve fast synchronization of low signal-to-noise ratio burst signals, and have the unique advantage of flexible and adjustable parameters.

Table and Figures | Reference | Related Articles | Metrics
Nonlinear direct data-driven control for UAV formation flight system
Jianhong WANG, RAMIREZ-MENDOZA Ricardo A., Yang XU
Journal of Systems Engineering and Electronics    2023, 34 (6): 1409-1418.   DOI: 10.23919/JSEE.2023.000140
Abstract216)   HTML14)    PDF(pc) (3509KB)(158)       Save

This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering, i.e., unmanned aerial vehicle (UAV) formation flight system. Firstly, from the theoretical point of view, consider one nonlinear closed-loop system with a nonlinear plant and nonlinear feed-forward controller simultaneously. To avoid the complex identification process for that nonlinear plant, a nonlinear direct data-driven control strategy is proposed to design that nonlinear feed-forward controller only through the input-output measured data sequence directly, whose detailed explicit forms are model inverse method and approximated analysis method. Secondly, from the practical point of view, after reviewing the UAV formation flight system, nonlinear direct data-driven control is applied in designing the formation controller, so that the followers can track the leader’s desired trajectory during one small time instant only through solving one data fitting problem. Since most natural phenomena have nonlinear properties, the direct method must be the better one. Corresponding system identification and control algorithms are required to be proposed for those nonlinear systems, and the direct nonlinear controller design is the purpose of this paper.

Table and Figures | Reference | Related Articles | Metrics
Radar fast long-time coherent integration via TR-SKT and robust sparse FRFT
Xiaolong CHEN, Jian GUAN, Jibin ZHENG, Yue ZHANG, Xiaohan YU
Journal of Systems Engineering and Electronics    2023, 34 (5): 1116-1129.   DOI: 10.23919/JSEE.2022.000099
Abstract504)   HTML18)    PDF(pc) (8822KB)(155)       Save

Long-time coherent integration (LTCI) is an effective way for radar maneuvering target detection, but it faces the problem of a large number of search parameters and large amount of calculation. Realizing the simultaneous compensation of the range and Doppler migrations in complex clutter background, and at the same time improving the calculation efficiency has become an urgent problem to be solved. The sparse transformation theory is introduced to LTCI in this paper, and a non-parametric searching sparse LTCI (SLTCI) based maneuvering target detection method is proposed. This method performs time reversal (TR) and second-order Keystone transform (SKT) in the range frequency & slow-time data to complete high-order range walk compensation, and achieves the coherent integration of maneuvering target across range and Doppler units via the robust sparse fractional Fourier transform (RSFRFT). It can compensate for the nonlinear range migration caused by high-order motion. S-band and X-band radar data measured in sea clutter background are used to verify the detection performance of the proposed method, which can achieve better detection performance of maneuvering targets with less computational burden compared with several popular integration methods.

Table and Figures | Reference | Related Articles | Metrics
A survey of fine-grained visual categorization based on deep learning
Yuxiang XIE, Quanzhi GONG, Xidao LUAN, Jie YAN, Jiahui ZHANG
Journal of Systems Engineering and Electronics    2024, 35 (6): 1337-1356.   DOI: 10.23919/JSEE.2022.000155
Abstract311)   HTML84)    PDF(pc) (7349KB)(154)       Save

Deep learning has achieved excellent results in various tasks in the field of computer vision, especially in fine-grained visual categorization. It aims to distinguish the subordinate categories of the label-level categories. Due to high intra-class variances and high inter-class similarity, the fine-grained visual categorization is extremely challenging. This paper first briefly introduces and analyzes the related public datasets. After that, some of the latest methods are reviewed. Based on the feature types, the feature processing methods, and the overall structure used in the model, we divide them into three types of methods: methods based on general convolutional neural network (CNN) and strong supervision of parts, methods based on single feature processing, and methods based on multiple feature processing. Most methods of the first type have a relatively simple structure, which is the result of the initial research. The methods of the other two types include models that have special structures and training processes, which are helpful to obtain discriminative features. We conduct a specific analysis on several methods with high accuracy on public datasets. In addition, we support that the focus of the future research is to solve the demand of existing methods for the large amount of the data and the computing power. In terms of technology, the extraction of the subtle feature information with the burgeoning vision transformer (ViT) network is also an important research direction.

Table and Figures | Reference | Related Articles | Metrics
Adaptive dynamic reconfiguration mechanism of unmanned swarm topology based on an evolutionary game
Minggang YU, Yanjie NIU, Xueda LIU, Dongge ZHANG, Peng ZHENG, Ming HE, Ling LUO
Journal of Systems Engineering and Electronics    2023, 34 (3): 598-614.   DOI: 10.23919/JSEE.2023.000041
Abstract291)   HTML13)    PDF(pc) (7633KB)(143)       Save

Autonomous cooperation of unmanned swarms is the research focus on “new combat forces” and “disruptive technologies” in military fields. The mechanism design is the fundamental way to realize autonomous cooperation. Facing the realistic requirements of a swarm network dynamic adjustment under the background of high dynamics and strong confrontation and aiming at the optimization of the coordination level, an adaptive dynamic reconfiguration mechanism of unmanned swarm topology based on an evolutionary game is designed. This paper analyzes military requirements and proposes the basic framework of autonomous cooperation of unmanned swarms, including the emergence of swarm intelligence, information network construction and collaborative mechanism design. Then, based on the framework, the adaptive dynamic reconfiguration mechanism is discussed in detail from two aspects: topology dynamics and strategy dynamics. Next, the unmanned swarms’ community network is designed, and the network characteristics are analyzed. Moreover, the mechanism characteristics are analyzed by numerical simulation, focusing on the impact of key parameters, such as cost, benefit coefficient and adjustment rate on the level of swarm cooperation. Finally, the conclusion is made, which is expected to provide a theoretical reference and decision support for cooperative mode design and combat effectiveness generation of unmanned swarm operations.

Table and Figures | Reference | Related Articles | Metrics
Minimum-energy leader-following formation of distributed multi-agent systems with communication constraints
Donghao QIN, Le WANG, Jiuan GAO, Jianxiang XI
Journal of Systems Engineering and Electronics    2023, 34 (6): 1419-1431.   DOI: 10.23919/JSEE.2023.000141
Abstract223)   HTML5)    PDF(pc) (4223KB)(140)       Save

This paper concerns minimum-energy leader-following formation design and analysis problems of distributed multi-agent systems (DMASs) subjected to randomly switching topologies and aperiodic communication pauses. The critical feature of this paper is that the energy consumption during the formation control process is restricted by the minimum-energy constraint in the sense of the linear matrix inequality. Firstly, the leader-following formation control protocol is proposed based on the relative state information of neighboring agents, where the total energy consumption is considered. Then, minimum-energy leader-following formation design and analysis criteria are presented in the form of the linear matrix inequality, which can be checked by the generalized eigenvalue method. Especially, the value of the minimum-energy constraint is determined. An illustrative simulation is provided to show the effectiveness of the main results.

Table and Figures | Reference | Related Articles | Metrics
Leader trajectory planning method considering constraints of formation controller
Dongdong YAO, Xiaofang WANG, Hai LIN, Zhuping WANG
Journal of Systems Engineering and Electronics    2023, 34 (5): 1294-1308.   DOI: 10.23919/JSEE.2023.000079
Abstract167)   HTML0)    PDF(pc) (8384KB)(138)       Save

To ensure safe flight of multiple fixed-wing unmanned aerial vehicles (UAVs) formation, considering trajectory planning and formation control together, a leader trajectory planning method based on the sparse A* algorithm is introduced. Firstly, a formation controller based on prescribed performance theory is designed to control the transient and steady formation configuration, as well as the formation forming time, which not only can form the designated formation configuration but also can guarantee collision avoidance and terrain avoidance theoretically. Next, considering the constraints caused by formation controller on trajectory planning such as the safe distance, turn angle and step length, as well as the constraint of formation shape, a leader trajectory planning method based on sparse A* algorithm is proposed. Simulation results show that the UAV formation can arrive at the destination safely with a short trajectory no matter keeping the formation or encountering formation transformation.

Table and Figures | Reference | Related Articles | Metrics
CONTENTS
Journal of Systems Engineering and Electronics    2023, 34 (5): 0-.  
Abstract123)      PDF(pc) (113KB)(134)       Save
Related Articles | Metrics
Shuffled frog leaping algorithm with non-dominated sorting for dynamic weapon-target assignment
Yang ZHAO, Jicheng LIU, Ju JIANG, Ziyang ZHEN
Journal of Systems Engineering and Electronics    2023, 34 (4): 1007-1019.   DOI: 10.23919/JSEE.2023.000102
Abstract162)   HTML2)    PDF(pc) (5482KB)(132)       Save

The dynamic weapon target assignment (DWTA) problem is of great significance in modern air combat. However, DWTA is a highly complex constrained multi-objective combinatorial optimization problem. An improved elitist non-dominated sorting genetic algorithm-II (NSGA-II) called the non-dominated shuffled frog leaping algorithm (NSFLA) is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints. In NSFLA, the shuffled frog leaping algorithm (SFLA) is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm (GA), displaying low optimization speed and heterogeneous space search defects. Two improvements have also been raised to promote the internal optimization performance of SFLA. Firstly, the local evolution scheme, a novel crossover mechanism, ensures that each individual participates in updating instead of only the worst ones, which can expand the diversity of the population. Secondly, a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search. Finally, the scheme is verified in various air combat scenarios. The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency, especially in many aircraft and the dynamic air combat environment.

Table and Figures | Reference | Related Articles | Metrics
Electric-controlled metasurface antenna array with ultra-wideband frequency reconfigurable reflection suppression
Yuejun ZHENG, Qiang CHEN, Liang DING, Fang YUAN, Yunqi FU
Journal of Systems Engineering and Electronics    2023, 34 (6): 1473-1482.   DOI: 10.23919/JSEE.2022.000121
Abstract135)   HTML1)    PDF(pc) (9572KB)(130)       Save

The electric-controlled metasurface antenna array (ECMSAA) with ultra-wideband frequency reconfigurable reflection suppression is proposed and realized. Firstly, an electric- controlled metasurface with ultra-wideband frequency reconfigurable in-phase reflection characteristics is designed. The element of the ECMSAA is constructed by loading the single electric-controlled metasurface unit on the conventional patch antenna element. The radiation properties of the conventional patch antenna and the reflection performance of electric-controlled metasurface are maintained when the antenna and the metasurface are integrated. Thus, the ECMSAA elements have excellent radiation properties and ultra-wideband frequency reconfigurable in-phase reflection characteristics simultaneously. To take a further step, a 6×10 ECMSAA is realized based on the designed metasurface antenna element. Simulated and measured results prove that the reflection of the ECMSAA is dynamically suppressed in the P and L bands. Meanwhile, high-gain and multi-polarization radiation properties of the ECMSAA are achieved. This design method not only realizes the frequency reconfigurable reflection suppression of the antenna array in the ultra-wide frequency band but also provides a way to develop an intelligent low-scattering antenna.

Table and Figures | Reference | Related Articles | Metrics
CONTENTS
Journal of Systems Engineering and Electronics    2024, 35 (4): 0-.  
Abstract64)      PDF(pc) (112KB)(126)       Save
Related Articles | Metrics
Multi-network-region traffic cooperative scheduling in large-scale LEO satellite networks
Chengxi LI, Fu WANG, Wei YAN, Yansong CUI, Xiaodong FAN, Guangyu ZHU, Yanxi XIE, Lixin YANG, Luming ZHOU, Ran ZHAO, Ning WANG
Journal of Systems Engineering and Electronics    2024, 35 (4): 829-841.   DOI: 10.23919/JSEE.2024.000045
Abstract213)   HTML10)    PDF(pc) (13188KB)(125)       Save

A low-Earth-orbit (LEO) satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking. However, the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service. Moreover, the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas. To enhance the forwarding capability of satellite networks, we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall. Then, we propose a multi-region cooperative traffic scheduling algorithm. The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding, significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding. This algorithm can utilize all the global satellite resources and improve the utilization of network resources. We model the cooperative multi-region scheduling of large-scale LEO satellites. Based on the model, we build a system testbed using OMNET++ to compare the proposed method with existing techniques. The simulations show that our proposed method can reduce the packet loss probability by 30% and improve the resource utilization ratio by 3.69%.

Table and Figures | Reference | Related Articles | Metrics
An AutoML based trajectory optimization method for long-distance spacecraft pursuit-evasion game
Fuyunxiang YANG, Leping YANG, Yanwei ZHU
Journal of Systems Engineering and Electronics    2023, 34 (3): 754-765.   DOI: 10.23919/JSEE.2023.000060
Abstract180)   HTML3)    PDF(pc) (4657KB)(112)       Save

Current successes in artificial intelligence domain have revitalized interest in spacecraft pursuit-evasion game, which is an interception problem with a non-cooperative maneuvering target. The paper presents an automated machine learning (AutoML) based method to generate optimal trajectories in long-distance scenarios. Compared with conventional deep neural network (DNN) methods, the proposed method dramatically reduces the reliance on manual intervention and machine learning expertise. Firstly, based on differential game theory and costate normalization technique, the trajectory optimization problem is formulated under the assumption of continuous thrust. Secondly, the AutoML technique based on sequential model-based optimization (SMBO) framework is introduced to automate DNN design in deep learning process. If recommended DNN architecture exists, the tree-structured Parzen estimator (TPE) is used, otherwise the efficient neural architecture search (NAS) with network morphism is used. Thus, a novel trajectory optimization method with high computational efficiency is achieved. Finally, numerical results demonstrate the feasibility and efficiency of the proposed method.

Table and Figures | Reference | Related Articles | Metrics
Fast measurement and prediction method for electromagnetic susceptibility of receiver
Yan CHEN, Zhonghao LU, Yunxia LIU
Journal of Systems Engineering and Electronics    2024, 35 (2): 275-285.   DOI: 10.23919/JSEE.2023.000127
Abstract150)   HTML22)    PDF(pc) (8682KB)(112)       Save

Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments, a novel testing and prediction method based on dual-channel multi-frequency is proposed to improve the traditional two-tone test. Firstly, two signal generators are used to generate signals at the radio frequency (RF) by frequency scanning, and then a rapid measurement at the intermediate frequency (IF) output port is carried out to obtain a huge amount of sample data for the subsequent analysis. Secondly, the IF output response data are modeled and analyzed to construct the linear and nonlinear response constraint equations in the frequency domain and prediction models in the power domain, which provide the theoretical criteria for interpreting and predicting electromagnetic susceptibility (EMS) of the receiver. An experiment performed on a radar receiver confirms the reliability of the method proposed in this paper. It shows that the interference of each harmonic frequency and each order to the receiver can be identified and predicted with the sensitivity model. Based on this, fast and comprehensive evaluation and prediction of the receiver’s EMS in complex environment can be efficiently realized.

Table and Figures | Reference | Related Articles | Metrics
CONTENTS
Journal of Systems Engineering and Electronics    2024, 35 (6): 0-0.  
Abstract35)      PDF(pc) (1747KB)(107)       Save
Related Articles | Metrics
Dynamic access task scheduling of LEO constellation based on space-based distributed computing
Wei LIU, Yifeng JIN, Lei ZHANG, Zihe GAO, Ying TAO
Journal of Systems Engineering and Electronics    2024, 35 (4): 842-854.   DOI: 10.23919/JSEE.2024.000071
Abstract184)   HTML2)    PDF(pc) (8944KB)(106)       Save

A dynamic multi-beam resource allocation algorithm for large low Earth orbit (LEO) constellation based on on-board distributed computing is proposed in this paper. The allocation is a combinatorial optimization process under a series of complex constraints, which is important for enhancing the matching between resources and requirements. A complex algorithm is not available because that the LEO on-board resources is limited. The proposed genetic algorithm (GA) based on two-dimensional individual model and uncorrelated single paternal inheritance method is designed to support distributed computation to enhance the feasibility of on-board application. A distributed system composed of eight embedded devices is built to verify the algorithm. A typical scenario is built in the system to evaluate the resource allocation process, algorithm mathematical model, trigger strategy, and distributed computation architecture. According to the simulation and measurement results, the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91% in a typical scene. The response time is decreased by 40% compared with the conditional GA.

Table and Figures | Reference | Related Articles | Metrics
Radar emitter signal recognition method based on improved collaborative semi-supervised learning
Tao JIN, Xindong ZHANG
Journal of Systems Engineering and Electronics    2023, 34 (5): 1182-1190.   DOI: 10.23919/JSEE.2023.000126
Abstract159)   HTML7)    PDF(pc) (3630KB)(104)       Save

Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recognition. To solve this problem, an optimized cooperative semi-supervised learning radar emitter recognition method based on a small amount of labeled data is developed. First, a small amount of labeled data are randomly sampled by using the bootstrap method, loss functions for three common deep learning networks are improved, the uniform distribution and cross-entropy function are combined to reduce the overconfidence of softmax classification. Subsequently, the dataset obtained after sampling is adopted to train three improved networks so as to build the initial model. In addition, the unlabeled data are preliminarily screened through dynamic time warping (DTW) and then input into the initial model trained previously for judgment. If the judgment results of two or more networks are consistent, the unlabeled data are labeled and put into the labeled data set. Lastly, the three network models are input into the labeled dataset for training, and the final model is built. As revealed by the simulation results, the semi-supervised learning method adopted in this paper is capable of exploiting a small amount of labeled data and basically achieving the accuracy of labeled data recognition.

Table and Figures | Reference | Related Articles | Metrics
DOA estimation of high-dimensional signals based on Krylov subspace and weighted l1-norm
Zeqi YANG, Yiheng LIU, Hua ZHANG, Shuai MA, Kai CHANG, Ning LIU, Xiaode LYU
Journal of Systems Engineering and Electronics    2024, 35 (3): 532-540.   DOI: 10.23919/JSEE.2023.000145
Abstract173)   HTML8)    PDF(pc) (8702KB)(101)       Save

With the extensive application of large-scale array antennas, the increasing number of array elements leads to the increasing dimension of received signals, making it difficult to meet the real-time requirement of direction of arrival (DOA) estimation due to the computational complexity of algorithms. Traditional subspace algorithms require estimation of the covariance matrix, which has high computational complexity and is prone to producing spurious peaks. In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements, this paper proposes a DOA estimation method based on Krylov subspace and weighted $ {l}_{1} $-norm. The method uses the multistage Wiener filter (MSWF) iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace, further uses the measurement matrix to reduce the dimensionality of the signal subspace observation, constructs a weighted matrix, and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted $ {l}_{1} $-norm to solve the target DOA. Simulation results show that the proposed method has high resolution under large array conditions, effectively suppresses spurious peaks, reduces computational complexity, and has good robustness for low signal to noise ratio (SNR) environment.

Table and Figures | Reference | Related Articles | Metrics
Three-dimensional reconstruction of precession warhead based on multi-view micro-Doppler analysis
Rongzheng ZHANG, Yong WANG, Jian MAO
Journal of Systems Engineering and Electronics    2024, 35 (3): 541-548.   DOI: 10.23919/JSEE.2024.000030
Abstract151)   HTML4)    PDF(pc) (4933KB)(101)       Save

The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target’s motion state and size. A three-dimensional reconstruction method for the precession warhead via the micro-Doppler analysis and inverse Radon transform (IRT) is proposed in this paper. The precession parameters are extracted by the micro-Doppler analysis from three radars, and the IRT is used to estimate the size of targe. The scatterers of the target can be reconstructed based on the above parameters. Simulation experimental results illustrate the effectiveness of the proposed method in this paper.

Table and Figures | Reference | Related Articles | Metrics
Scale effect removal and range migration correction for hypersonic target coherent detection
Shang WU, Zhi SUN, Xingtao JIANG, Haonan ZHANG, Jiangyun DENG, Xiaolong LI, Guolong CUI
Journal of Systems Engineering and Electronics    2024, 35 (1): 14-23.   DOI: 10.23919/JSEE.2023.000151
Abstract186)   HTML16)    PDF(pc) (2477KB)(99)       Save

The detection of hypersonic targets usually confronts range migration (RM) issue before coherent integration (CI). The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition. However, with the increasing requirement of far-range detection, the time bandwidth product, which is corresponding to radar’s mean power, should be promoted in actual application. Thus, the echo signal generates the scale effect (SE) at large time bandwidth product situation, influencing the intra and inter pulse integration performance. To eliminate SE and correct RM, this paper proposes an effective algorithm, i.e., scaled location rotation transform (ScLRT). The ScLRT can remove SE to obtain the matching pulse compression (PC) as well as correct RM to complete CI via the location rotation transform, being implemented by seeking the actual rotation angle. Compared to the traditional coherent detection algorithms, ScLRT can address the SE problem to achieve better detection/estimation capabilities. At last, this paper gives several simulations to assess the viability of ScLRT.

Table and Figures | Reference | Related Articles | Metrics