30 Most Down Articles
Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

In last 2 years
Please wait a minute...
For Selected: Toggle Thumbnails
A review of periodic orbits in the circular restricted three-body problem
Renyong ZHANG
Journal of Systems Engineering and Electronics    2022, 33 (3): 612-646.   DOI: 10.23919/JSEE.2022.000059
Abstract220)   HTML14)    PDF(pc) (16032KB)(298)       Save

This review article aims to give a comprehensive review of periodic orbits in the circular restricted three-body problem (CRTBP), which is a standard ideal model for the Earth-Moon system and is closest to the practical mechanical model. It focuses the attention on periodic orbits in the Earth-Moon system. This work is primarily motivated by a series of missions and plans that take advantages of the three-body periodic orbits near the libration points or around two gravitational celestial bodies. Firstly, simple periodic orbits and their classi?cation that is usually considered to be early work before 1970 are summarized, and periodic orbits around Lagrange points, either planar or three-dimensional, are intensively studied during past decades. Subsequently, stability index of a periodic orbit and bifurcation analysis are presented, which demonstrate a guideline to ?nd more periodic orbits inspired by bifurcation signals. Then, the practical techniques for computing a wide range of periodic orbits and associated quasi-periodic orbits, as well as constructing database of periodic orbits by numerical searching techniques are also presented. For those unstable periodic orbits, the station keeping maneuvers are reviewed. Finally, the applications of periodic orbits are presented, including those in practical missions, under consideration, and still in conceptual design stage. This review article has the function of bridging between engineers and researchers, so as to make it more convenient and faster for engineers to understand the complex restricted three-body problem (RTBP). At the same time, it can also provide some technical thinking for general researchers.

Table and Figures | Reference | Related Articles | Metrics
Two-layer formation-containment fault-tolerant control of fixed-wing UAV swarm for dynamic target tracking
Boyu QIN, Dong ZHANG, Shuo TANG, Yang XU
Journal of Systems Engineering and Electronics    2023, 34 (6): 1375-1396.   DOI: 10.23919/JSEE.2023.000153
Abstract225)   HTML24)    PDF(pc) (22266KB)(282)       Save

This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle (UAV) swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs ’ actuator and sensor. The fixed-wing UAV swarm under consideration is organized as a “multi-leader-multi-follower” structure, in which only several leaders can obtain the dynamic target information while others only receive the neighbors’ information through the communication network. To simultaneously realize the formation, containment, and dynamic target tracking, a two-layer control framework is adopted to decouple the problem into two subproblems: reference trajectory generation and trajectory tracking. In the upper layer, a distributed finite-time estimator (DFTE) is proposed to generate each UAV ’s reference trajectory in accordance with the control objective. Subsequently, a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer, where a novel adaptive extended super-twisting (AESTW) algorithm with a finite-time extended state observer (FTESO) is involved in solving the robust trajectory tracking control problem under model uncertainties, actuator, and sensor faults. The proposed controller simultaneously guarantees rapidness and enhances the system ’s robustness with fewer chattering effects. Finally, corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme.

Table and Figures | Reference | Related Articles | Metrics
Complex systems and network science: a survey
Kewei YANG, Jichao LI, Maidi LIU, Tianyang LEI, Xueming XU, Hongqian WU, Jiaping CAO, Gaoxin QI
Journal of Systems Engineering and Electronics    2023, 34 (3): 543-573.   DOI: 10.23919/JSEE.2023.000080
Abstract226)   HTML24)    PDF(pc) (8641KB)(272)       Save

Complex systems widely exist in nature and human society. There are complex interactions between system elements in a complex system, and systems show complex features at the macro level, such as emergence, self-organization, uncertainty, and dynamics. These complex features make it difficult to understand the internal operation mechanism of complex systems. Networked modeling of complex systems is a favorable means of understanding complex systems. It not only represents complex interactions but also reflects essential attributes of complex systems. This paper summarizes the research progress of complex systems modeling and analysis from the perspective of network science, including networked modeling, vital node analysis, network invulnerability analysis, network disintegration analysis, resilience analysis, complex network link prediction, and the attacker-defender game in complex networks. In addition, this paper presents some points of view on the trend and focus of future research on network analysis of complex systems.

Table and Figures | Reference | Related Articles | Metrics
A survey on joint-operation application for unmanned swarm formations under a complex confrontation environment
Jialong ZHANG, Kun HAN, Pu ZHANG, Zhongxi HOU, Lei YE
Journal of Systems Engineering and Electronics    2023, 34 (6): 1432-1446.   DOI: 10.23919/JSEE.2023.000162
Abstract237)   HTML22)    PDF(pc) (4415KB)(259)       Save

With the rapid development of informatization, autonomy and intelligence, unmanned swarm formation intelligent operations will become the main combat mode of future wars. Typical unmanned swarm formations such as ground-based directed energy weapon formations, space-based kinetic energy weapon formations, and sea-based carrier-based formations have become the trump card for winning future wars. In a complex confrontation environment, these sophisticated weapon formation systems can precisely strike mobile threat group targets, making them extreme deterrents in joint combat applications. Based on this, first, this paper provides a comprehensive summary of the outstanding advantages, strategic position and combat style of unmanned clusters in joint warfare to highlight their important position in future warfare. Second, a detailed analysis of the technological breakthroughs in four key areas, situational awareness, heterogeneous coordination, mixed combat, and intelligent assessment of typical unmanned aerial vehicle (UAV) swarms in joint warfare, is presented. An in-depth analysis of the UAV swarm communication networking operating mechanism during joint warfare is provided to lay the theoretical foundation for subsequent cooperative tracking and control. Then, an in-depth analysis of the shut-in technology requirements of UAV clusters in joint warfare is provided to lay a theoretical foundation for subsequent cooperative tracking control. Finally, the technical requirements of UAV clusters in joint warfare are analysed in depth so the key technologies can form a closed-loop kill chain system and provide theoretical references for the study of intelligent command operations.

Table and Figures | Reference | Related Articles | Metrics
A fine acquisition algorithm based on fast three-time FRFT for dynamic and weak GNSS signals
YI PAN, Sheng ZHANG, Xiao WANG, Manhao LIU, Yiran LUO
Journal of Systems Engineering and Electronics    2023, 34 (2): 259-269.   DOI: 10.23919/JSEE.2023.000017
Abstract249)   HTML22)    PDF(pc) (6210KB)(258)       Save

As high-dynamics and weak-signal are of two primary concerns of navigation using Global Navigation Satellite System (GNSS) signals, an acquisition algorithm based on three-time fractional Fourier transform (FRFT) is presented to simplify the calculation effectively. Firstly, the correlation results similar to linear frequency modulated (LFM) signals are derived on the basis of the high dynamic GNSS signal model. Then, the principle of obtaining the optimum rotation angle is analyzed, which is measured by FRFT projection lengths with two selected rotation angles. Finally, Doppler shift, Doppler rate, and code phase are accurately estimated in a real-time and low signal to noise ratio (SNR) wireless communication system. The theoretical analysis and simulation results show that the fast FRFT algorithm can accurately estimate the high dynamic parameters by converting the traditional two-dimensional search process to only three times FRFT. While the acquisition performance is basically the same, the computational complexity and running time are greatly reduced, which is more conductive to practical application.

Table and Figures | Reference | Related Articles | Metrics
State estimation in range coordinate using range-only measurements
Keyi LI, Zhengkun GUO, Gongjian ZHOU
Journal of Systems Engineering and Electronics    2022, 33 (3): 497-510.   DOI: 10.23919/JSEE.2022.000050
Abstract351)   HTML551)    PDF(pc) (4731KB)(254)       Save

In some tracking applications, due to the sensor characteristic, only range measurements are available. If this is the case, due to the lack of full position measurements, the observability of Cartesian states (e.g., position and velocity) are limited to particular cases. For general cases, the range measurements can be utilized by developing a state estimation algorithm in range-Doppler (R-D) plane to obtain accurate range and Doppler estimates. In this paper, a state estimation method based on the proper dynamic model in the R-D plane is proposed. The unscented Kalman filter is employed to handle the strong nonlinearity in the dynamic model. Two filtering initialization methods are derived to extract the initial state estimate and the initial covariance in the R-D plane from the first several range measurements. One is derived based on the well-known two-point differencing method. The other incorporates the correct dynamic model information and uses the unscented transformation method to obtain the initial state estimates and covariance, resulting in a model-based method, which capitalizes the model information to yield better performance. Monte Carlo simulation results are provided to illustrate the effectiveness and superior performance of the proposed state estimation and filter initialization methods.

Table and Figures | Reference | Related Articles | Metrics
Image encryption based on a novel memristive chaotic system, Grain-128a algorithm and dynamic pixel masking
Lilian HUANG, Yi SUN, Jianhong XIANG, Linyu WANG
Journal of Systems Engineering and Electronics    2022, 33 (3): 534-550.   DOI: 10.23919/JSEE.2022.000053
Abstract220)   HTML6)    PDF(pc) (15389KB)(235)       Save

In this paper, we first propose a memristive chaotic system and implement it by circuit simulation. The chaotic dynamics and various attractors are analysed by using phase portrait, bifurcation diagram, and Lyapunov exponents. In particular, the system has robust chaos in a wide parameter range and the initial value space, which is favourable to the security communication application. Consequently, we further explore its application in image encryption and present a new scheme. Before image processing, the external key is protected by the Grain-128a algorithm and the initial values of the memristive system are updated with the plain image. We not only perform random pixel extraction and masking with the chaotic cipher, but also use them as control parameters for Brownian motion to obtain the permutation matrix. In addition, multiplication on the finite field GF(28) is added to further enhance the cryptography. Finally, the simulation results verify that the proposed image encryption scheme has better performance and higher security, which can effectively resist various attacks.

Table and Figures | Reference | Related Articles | Metrics
Overview of radar detection methods for low altitude targets in marine environments
Yong YANG, Boyu YANG
Journal of Systems Engineering and Electronics    2024, 35 (1): 1-13.   DOI: 10.23919/JSEE.2024.000026
Abstract284)   HTML53)    PDF(pc) (4486KB)(221)       Save

In this paper, a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented, focusing on the challenges posed by sea clutter and multipath scattering. The performance of the radar detection methods under sea clutter, multipath, and combined conditions is categorized and summarized, and future research directions are outlined to enhance radar detection performance for low–altitude targets in maritime environments.

Table and Figures | Reference | Related Articles | Metrics
Special Section on Autonomous Decision and Cooperative Control of UAV Swarms
Wenwu YU, Wei REN, Dong ZHANG
Journal of Systems Engineering and Electronics    2023, 34 (6): 0-0.  
Abstract161)   HTML36)    PDF(pc) (734KB)(212)       Save
Reference | Related Articles | Metrics
Deep reinforcement learning for UAV swarm rendezvous behavior
Yaozhong ZHANG, Yike LI, Zhuoran WU, Jialin XU
Journal of Systems Engineering and Electronics    2023, 34 (2): 360-373.   DOI: 10.23919/JSEE.2023.000056
Abstract87)   HTML4)    PDF(pc) (6223KB)(205)       Save

The unmanned aerial vehicle (UAV) swarm technology is one of the research hotspots in recent years. With the continuous improvement of autonomous intelligence of UAV, the swarm technology of UAV will become one of the main trends of UAV development in the future. This paper studies the behavior decision-making process of UAV swarm rendezvous task based on the double deep Q network (DDQN) algorithm. We design a guided reward function to effectively solve the problem of algorithm convergence caused by the sparse return problem in deep reinforcement learning (DRL) for the long period task. We also propose the concept of temporary storage area, optimizing the memory playback unit of the traditional DDQN algorithm, improving the convergence speed of the algorithm, and speeding up the training process of the algorithm. Different from traditional task environment, this paper establishes a continuous state-space task environment model to improve the authentication process of UAV task environment. Based on the DDQN algorithm, the collaborative tasks of UAV swarm in different task scenarios are trained. The experimental results validate that the DDQN algorithm is efficient in terms of training UAV swarm to complete the given collaborative tasks while meeting the requirements of UAV swarm for centralization and autonomy, and improving the intelligence of UAV swarm collaborative task execution. The simulation results show that after training, the proposed UAV swarm can carry out the rendezvous task well, and the success rate of the mission reaches 90%.

Table and Figures | Reference | Related Articles | Metrics
A spawning particle filter for defocused moving target detection in GNSS-based passive radar
Hongcheng ZENG, Jiadong DENG, Pengbo WANG, Xinkai ZHOU, Wei YANG, Jie CHEN
Journal of Systems Engineering and Electronics    2023, 34 (5): 1085-1100.   DOI: 10.23919/JSEE.2023.000033
Abstract161)   HTML23)    PDF(pc) (7015KB)(204)       Save

Global Navigation Satellite System (GNSS)-based passive radar (GBPR) has been widely used in remote sensing applications. However, for moving target detection (MTD), the quadratic phase error (QPE) introduced by the non-cooperative target motion is usually difficult to be compensated, as the low power level of the GBPR echo signal renders the estimation of the Doppler rate less effective. Consequently, the moving target in GBPR image is usually defocused, which aggravates the difficulty of target detection even further. In this paper, a spawning particle filter (SPF) is proposed for defocused MTD. Firstly, the measurement model and the likelihood ratio function (LRF) of the defocused point-like target image are deduced. Then, a spawning particle set is generated for subsequent target detection, with reference to traditional particles in particle filter (PF) as their parent. After that, based on the PF estimator, the SPF algorithm and its sequential Monte Carlo (SMC) implementation are proposed with a novel amplitude estimation method to decrease the target state dimension. Finally, the effectiveness of the proposed SPF is demonstrated by numerical simulations and preliminary experimental results, showing that the target range and Doppler can be estimated accurately.

Table and Figures | Reference | Related Articles | Metrics
Recognition and interfere deceptive behavior based on inverse reinforcement learning and game theory
Yunxiu ZENG, Kai XU
Journal of Systems Engineering and Electronics    2023, 34 (2): 270-288.   DOI: 10.23919/JSEE.2023.000012
Abstract107)   HTML5)    PDF(pc) (8851KB)(196)       Save

In real-time strategy (RTS) games, the ability of recognizing other players’ goals is important for creating artifical intelligence (AI) players. However, most current goal recognition methods do not take the player ’s deceptive behavior into account which often occurs in RTS game scenarios, resulting in poor recognition results. In order to solve this problem, this paper proposes goal recognition for deceptive agent, which is an extended goal recognition method applying the deductive reason method (from general to special) to model the deceptive agent’s behavioral strategy. First of all, the general deceptive behavior model is proposed to abstract features of deception, and then these features are applied to construct a behavior strategy that best matches the deceiver’s historical behavior data by the inverse reinforcement learning (IRL) method. Final, to interfere with the deceptive behavior implementation, we construct a game model to describe the confrontation scenario and the most effective interference measures.

Table and Figures | Reference | Related Articles | Metrics
Coherent change detection of fine traces based on multi-angle SAR observations
Xiuli KOU, Guanyong WANG, Jun LI, Jie CHEN
Journal of Systems Engineering and Electronics    2023, 34 (1): 1-8.   DOI: 10.23919/JSEE.2023.000001
Abstract165)   HTML21)    PDF(pc) (7599KB)(191)       Save

Coherent change detection (CCD) is an effective method to detect subtle scene changes that occur between temporal synthetic aperture radar (SAR) observations. Most coherence estimators are obtained from a Hermitian product based on local statistics. Increasing the number of samples in the local window can improve the estimation bias, but cause the loss of the estimated images spatial resolution. The limitations of these estimators lead to unclear contour of the disturbed region, and even the omission of fine change targets. In this paper, a CCD approach is proposed to detect fine scene changes from multi-temporal and multi-angle SAR image pairs. Multi-angle CCD estimator can improve the contrast between the change target and the background clutter by jointly accumulating single-angle alternative estimator results without further loss of image resolution. The sensitivity of detection performance to image quantity and angle interval is analyzed. Theoretical analysis and experimental results verify the performance of the proposed algorithm.

Table and Figures | Reference | Related Articles | Metrics
Mission reliability modeling and evaluation for reconfigurable unmanned weapon system-of-systems based on effective operation loop
Zhiwei CHEN, Ziming ZHOU, Luogeng ZHANG, Chaowei CUI, Jilong ZHONG
Journal of Systems Engineering and Electronics    2023, 34 (3): 588-597.   DOI: 10.23919/JSEE.2023.000082
Abstract113)   HTML11)    PDF(pc) (1986KB)(183)       Save

The concept of unmanned weapon system-of-systems (UWSoS) involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission. The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission. However, issues with heterogeneity, cooperation between systems, and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods. This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration. First, we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints. Then, we propose an effective operation-loop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline. Moreover, a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration, revealing the evolution law of the effective operation loop and mission reliability. Finally, a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods. The mission reliability is achieved by considering external shocks, which can serve as a reference for evaluating and improving the effectiveness of UWSoS.

Table and Figures | Reference | Related Articles | Metrics
Half space object classification via incident angle based fusion of radar and infrared sensors
Zhenyu HE, Xiaodong ZHUGE, Junxiang WANG, Shihao YU, Yongjun XIE, Yuxiong ZHAO
Journal of Systems Engineering and Electronics    2022, 33 (5): 1025-1031.   DOI: 10.23919/JSEE.2022.000100
Abstract461)   HTML582)    PDF(pc) (6478KB)(176)       Save

In this paper, we introduce an incident angle based fusion method for radar and infrared sensors to improve the recognition rate of complex targets under half space scenarios, e.g., vehicles on the ground in this paper. For radar sensors, convolutional operation is introduced into the autoencoder, a “winner-take-all (WTA)” convolutional autoencoder (CAE) is used to improve the recognition rate of the radar high resolution range pro?le (HRRP). Moreover, different from the free space, the HRRP in half space is more complex. In order to get closer to the real situation, the half space HRRP is simulated as the dataset. The recognition rate has a growth more than 7% compared with the traditional CAE or denoised sparse autoencoder (DSAE). For infrared sensor, a convolutional neural network (CNN) is used for infrared image recognition. Finally, we combine the two results with the Dempster-Shafer (D-S) evidence theory, and the discounting operation is introduced in the fusion to improve the recognition rate. The recognition rate after fusion has a growth more than 7% compared with a single sensor. After the discounting operation, the accuracy rate has been improved by 1.5%, which validates the effectiveness of the proposed method.

Table and Figures | Reference | Related Articles | Metrics
DQN-based decentralized multi-agent JSAP resource allocation for UAV swarm communication
Jie LI, Xiaoyu DANG, Sai LI
Journal of Systems Engineering and Electronics    2023, 34 (2): 289-298.   DOI: 10.23919/JSEE.2023.000045
Abstract128)   HTML11)    PDF(pc) (1895KB)(174)       Save

It is essential to maximize capacity while satisfying the transmission time delay of unmanned aerial vehicle (UAV) swarm communication system. In order to address this challenge, a dynamic decentralized optimization mechanism is presented for the realization of joint spectrum and power (JSAP) resource allocation based on deep Q-learning networks (DQNs). Each UAV to UAV (U2U) link is regarded as an agent that is capable of identifying the optimal spectrum and power to communicate with one another. The convolutional neural network, target network, and experience replay are adopted while training. The findings of the simulation indicate that the proposed method has the potential to improve both communication capacity and probability of successful data transmission when compared with random centralized assignment and multichannel access methods.

Table and Figures | Reference | Related Articles | Metrics
Multicriteria game approach to air-to-air combat tactical decisions for multiple UAVs
Ruhao JIANG, He LUO, Yingying MA, Guoqiang WANG
Journal of Systems Engineering and Electronics    2023, 34 (6): 1447-1464.   DOI: 10.23919/JSEE.2023.000115
Abstract140)   HTML9)    PDF(pc) (7388KB)(173)       Save

Air-to-air combat tactical decisions for multiple unmanned aerial vehicles (ACTDMU) are a key decision-making step in beyond visual range combat. Complex influencing factors, strong antagonism and real-time requirements need to be considered in the ACTDMU problem. In this paper, we propose a multicriteria game approach to ACTDMU. This approach consists of a multicriteria game model and a Pareto Nash equilibrium algorithm. In this model, we form the strategy profiles for the integration of air-to-air combat tactics and weapon target assignment strategies by considering the correlation between them, and we design the vector payoff functions based on predominance factors. We propose a algorithm of Pareto Nash equilibrium based on preference relations using threshold constraints (PNE-PRTC), and we prove that the solutions obtained by this algorithm are refinements of Pareto Nash equilibrium solutions. The numerical experiments indicate that PNE-PRTC algorithm is considerably faster than the baseline algorithms and the performance is better. Especially on large-scale instances, the Pareto Nash equilibrium solutions can be calculated by PNE-PRTC algorithm at the second level. The simulation experiments show that the multicriteria game approach is more effective than one-side decision approaches such as multiple-attribute decision-making and randomly chosen decisions.

Table and Figures | Reference | Related Articles | Metrics
UAV penetration mission path planning based on improved holonic particle swarm optimization
Jing LUO, Qianchao LIANG, Hao LI
Journal of Systems Engineering and Electronics    2023, 34 (1): 197-213.   DOI: 10.23919/JSEE.2022.000132
Abstract73)   HTML1)    PDF(pc) (5727KB)(169)       Save

To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle (UAV) penetration process, a three-dimensional path planning algorithm is proposed based on improved holonic particle swarm optimization (IHPSO). Firstly, the requirements of terrain threat, radar detection, and penetration time in the process of UAV penetration are quantified. Regarding radar threats, a radar echo analysis method based on radar cross section (RCS) and the spatial situation is proposed to quantify the concealment of UAV penetration. Then the structure-particle swarm optimization (PSO) algorithm is improved from three aspects. First, the conversion ability of the search strategy is enhanced by using the system clustering method and the information entropy grouping strategy instead of random grouping and constructing the state switching conditions based on the fitness function. Second, the unclear setting of iteration numbers is addressed by using particle spacing to create the termination condition of the algorithm. Finally, the trajectory is optimized to meet the intended requirements by building a predictive control model and using the IHPSO for simulation verification. Numerical examples show the superiority of the proposed method over the existing PSO methods.

Table and Figures | Reference | Related Articles | Metrics
Recognition of dynamically varying PRI modulation via deep learning and recurrence plot
Pengcheng WANG, Weisong LIU, Zheng LIU
Journal of Systems Engineering and Electronics    2023, 34 (4): 815-826.   DOI: 10.23919/JSEE.2022.000071
Abstract114)   HTML24)    PDF(pc) (2584KB)(169)       Save

Recognition of pulse repetition interval (PRI) modulation is a fundamental task in the interpretation of radar intentions. However, the existing PRI modulation recognition methods mainly focus on single-label classification of PRI sequences. The prerequisite for the effectiveness of these methods is that the PRI sequences are perfectly divided according to different modulation types before identification, while the actual situation is that radar pulses reach the receiver continuously, and there is no completely reliable method to achieve this division in the case of non-cooperative reception. Based on the above actual needs, this paper implements an algorithm based on the recurrence plot technique and the multi-target detection model, which does not need to divide the PRI sequence in advance. Compared with the sliding window method, it can more effectively realize the recognition of the dynamically varying PRI modulation.

Table and Figures | Reference | Related Articles | Metrics
A semantic-centered cloud control framework for autonomous unmanned system
Weijian PANG, Hui LI, Xinyi MA, Hailin ZHANG
Journal of Systems Engineering and Electronics    2022, 33 (4): 771-784.   DOI: 10.23919/JSEE.2022.000077
Abstract362)   HTML555)    PDF(pc) (6201KB)(152)       Save

Rich semantic information in natural language increases team efficiency in human collaboration, reduces dependence on high precision data information, and improves adaptability to dynamic environment. We propose a semantic centered cloud control framework for cooperative multi-unmanned ground vehicle (UGV) system. Firstly, semantic modeling of task and environment is implemented by ontology to build a unified conceptual architecture, and secondly, a scene semantic information extraction method combining deep learning and semantic web rule language (SWRL) rules is used to realize the scene understanding and task-level cloud task cooperation. Finally, simulation results show that the framework is a feasible way to enable autonomous unmanned systems to conduct cooperative tasks.

Table and Figures | Reference | Related Articles | Metrics
VLCA: vision-language aligning model with cross-modal attention for bilingual remote sensing image captioning
Tingting WEI, Weilin YUAN, Junren LUO, Wanpeng ZHANG, Lina LU
Journal of Systems Engineering and Electronics    2023, 34 (1): 9-18.   DOI: 10.23919/JSEE.2023.000035
Abstract148)   HTML11)    PDF(pc) (6048KB)(149)       Save

In the field of satellite imagery, remote sensing image captioning (RSIC) is a hot topic with the challenge of overfitting and difficulty of image and text alignment. To address these issues, this paper proposes a vision-language aligning paradigm for RSIC to jointly represent vision and language. First, a new RSIC dataset DIOR-Captions is built for augmenting object detection in optical remote (DIOR) sensing images dataset with manually annotated Chinese and English contents. Second, a Vision-Language aligning model with Cross-modal Attention (VLCA) is presented to generate accurate and abundant bilingual descriptions for remote sensing images. Third, a cross-modal learning network is introduced to address the problem of visual-lingual alignment. Notably, VLCA is also applied to end-to-end Chinese captions generation by using the pre-training language model of Chinese. The experiments are carried out with various baselines to validate VLCA on the proposed dataset. The results demonstrate that the proposed algorithm is more descriptive and informative than existing algorithms in producing captions.

Table and Figures | Reference | Related Articles | Metrics
Approximate CN scheme and its open region problems for metamaterial rotational symmetric simulation
Peiyu WU, Han YU, Yenan HU, Yongjun XIE, Haolin JIANG
Journal of Systems Engineering and Electronics    2022, 33 (6): 1081-1087.   DOI: 10.23919/JSEE.2022.000135
Abstract190)   HTML28)    PDF(pc) (5587KB)(138)       Save

In order to simulate metamaterial rotational symmetric open region problems, unconditionally stable perfectly match layer (PML) implementation is proposed in the body of revolution (BOR) finite-difference time-domain (FDTD) lattice. More precisely, the proposed algorithm is implemented by the Crank-Nicolson (CN) Douglas-Gunn (DG) procedure for BOR metamaterial simulation. The constitutive relationship of metamaterial can be expressed by the Drude model and calculated by the piecewise linear recursive convolution (PLRC) approach. The effectiveness including absorption, efficiency, and accuracy is demonstrated through the numerical example. It can be concluded that the proposed implementation is to take the advantages of the CNDG-PML procedure, PLRC approach, and BOR-FDTD algorithm in terms of considerable accuracy, enhanced absorption and remarkable efficiency. Meanwhile, it can be demonstrated that the proposed scheme can maintain its unconditional stability when the time step exceeds the Courant-Friedrichs-Levy (CFL) condition.

Table and Figures | Reference | Related Articles | Metrics
Radar fast long-time coherent integration via TR-SKT and robust sparse FRFT
Xiaolong CHEN, Jian GUAN, Jibin ZHENG, Yue ZHANG, Xiaohan YU
Journal of Systems Engineering and Electronics    2023, 34 (5): 1116-1129.   DOI: 10.23919/JSEE.2022.000099
Abstract408)   HTML18)    PDF(pc) (8822KB)(136)       Save

Long-time coherent integration (LTCI) is an effective way for radar maneuvering target detection, but it faces the problem of a large number of search parameters and large amount of calculation. Realizing the simultaneous compensation of the range and Doppler migrations in complex clutter background, and at the same time improving the calculation efficiency has become an urgent problem to be solved. The sparse transformation theory is introduced to LTCI in this paper, and a non-parametric searching sparse LTCI (SLTCI) based maneuvering target detection method is proposed. This method performs time reversal (TR) and second-order Keystone transform (SKT) in the range frequency & slow-time data to complete high-order range walk compensation, and achieves the coherent integration of maneuvering target across range and Doppler units via the robust sparse fractional Fourier transform (RSFRFT). It can compensate for the nonlinear range migration caused by high-order motion. S-band and X-band radar data measured in sea clutter background are used to verify the detection performance of the proposed method, which can achieve better detection performance of maneuvering targets with less computational burden compared with several popular integration methods.

Table and Figures | Reference | Related Articles | Metrics
Dynamic event-triggered formation control of second-order nonholonomic systems
Xiaoyu WANG, Sijia SUN, Feng XIAO, Mei YU
Journal of Systems Engineering and Electronics    2023, 34 (2): 501-514.   DOI: 10.23919/JSEE.2023.000049
Abstract72)   HTML0)    PDF(pc) (5376KB)(134)       Save

In this paper, the formation control problem of second-order nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme. Event-triggered control protocols combined with persistent excitation (PE) conditions are presented. In event-detecting processes, an inactive time is introduced after each sampling instant, which can ensure a positive minimum sampling interval. To increase the flexibility of the event-triggered scheme, internal dynamic variables are included in event-triggering conditions. Moreover, the dynamic event-triggered scheme plays an important role in increasing the lengths of time intervals between any two consecutive events. In addition, event-triggered control protocols without forward and angular velocities are also presented based on approximate-differentiation (low-pass) filters. The asymptotic convergence results are given based on a nested Matrosov theorem and artificial sampling methods.

Table and Figures | Reference | Related Articles | Metrics
Nonlinear direct data-driven control for UAV formation flight system
Jianhong WANG, RAMIREZ-MENDOZA Ricardo A., Yang XU
Journal of Systems Engineering and Electronics    2023, 34 (6): 1409-1418.   DOI: 10.23919/JSEE.2023.000140
Abstract106)   HTML12)    PDF(pc) (3509KB)(133)       Save

This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering, i.e., unmanned aerial vehicle (UAV) formation flight system. Firstly, from the theoretical point of view, consider one nonlinear closed-loop system with a nonlinear plant and nonlinear feed-forward controller simultaneously. To avoid the complex identification process for that nonlinear plant, a nonlinear direct data-driven control strategy is proposed to design that nonlinear feed-forward controller only through the input-output measured data sequence directly, whose detailed explicit forms are model inverse method and approximated analysis method. Secondly, from the practical point of view, after reviewing the UAV formation flight system, nonlinear direct data-driven control is applied in designing the formation controller, so that the followers can track the leader’s desired trajectory during one small time instant only through solving one data fitting problem. Since most natural phenomena have nonlinear properties, the direct method must be the better one. Corresponding system identification and control algorithms are required to be proposed for those nonlinear systems, and the direct nonlinear controller design is the purpose of this paper.

Table and Figures | Reference | Related Articles | Metrics
A review of mobile robot motion planning methods: from classical motion planning workflows to reinforcement learning-based architectures
Lu DONG, Zichen HE, Chunwei SONG, Changyin SUN
Journal of Systems Engineering and Electronics    2023, 34 (2): 439-459.   DOI: 10.23919/JSEE.2023.000051
Abstract155)   HTML17)    PDF(pc) (7238KB)(122)       Save

Motion planning is critical to realize the autonomous operation of mobile robots. As the complexity and randomness of robot application scenarios increase, the planning capability of the classical hierarchical motion planners is challenged. With the development of machine learning, the deep reinforcement learning (DRL)-based motion planner has gradually become a research hotspot due to its several advantageous feature. The DRL-based motion planner is model-free and does not rely on the prior structured map. Most importantly, the DRL-based motion planner achieves the unification of the global planner and the local planner. In this paper, we provide a systematic review of various motion planning methods. Firstly, we summarize the representative and state-of-the-art works for each submodule of the classical motion planning architecture and analyze their performance features. Then, we concentrate on summarizing reinforcement learning (RL)-based motion planning approaches, including motion planners combined with RL improvements, map-free RL-based motion planners, and multi-robot cooperative planning methods. Finally, we analyze the urgent challenges faced by these mainstream RL-based motion planners in detail, review some state-of-the-art works for these issues, and propose suggestions for future research.

Table and Figures | Reference | Related Articles | Metrics
Disparity estimation for multi-scale multi-sensor fusion
Guoliang SUN, Shanshan PEI, Qian LONG, Sifa ZHENG, Rui YANG
Journal of Systems Engineering and Electronics    2024, 35 (2): 259-274.   DOI: 10.23919/JSEE.2023.000101
Abstract104)   HTML29)    PDF(pc) (9297KB)(122)       Save

The perception module of advanced driver assistance systems plays a vital role. Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer. This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme. A binocular stereo vision sensor composed of two cameras and a light deterction and ranging (LiDAR) sensor is used to jointly perceive the environment, and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map. This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors. Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.

Table and Figures | Reference | Related Articles | Metrics
Deep learning for fast channel estimation in millimeter-wave MIMO systems
Siting LYU, Xiaohui LI, Tao FAN, Jiawen LIU, Mingli SHI
Journal of Systems Engineering and Electronics    2022, 33 (6): 1088-1095.   DOI: 10.23919/JSEE.2022.000126
Abstract130)   HTML11)    PDF(pc) (5644KB)(117)       Save

Channel estimation has been considered as a key issue in the millimeter-wave (mmWave) massive multi-input multi-output (MIMO) communication systems, which becomes more challenging with a large number of antennas. In this paper, we propose a deep learning (DL)-based fast channel estimation method for mmWave massive MIMO systems. The proposed method can directly and effectively estimate channel state information (CSI) from received data without performing pilot signals estimate in advance, which simplifies the estimation process. Specifically, we develop a convolutional neural network (CNN)-based channel estimation network for the case of dimensional mismatch of input and output data, subsequently denoted as channel (H) neural network (HNN). It can quickly estimate the channel information by learning the inherent characteristics of the received data and the relationship between the received data and the channel, while the dimension of the received data is much smaller than the channel matrix. Simulation results show that the proposed HNN can gain better channel estimation accuracy compared with existing schemes.

Table and Figures | Reference | Related Articles | Metrics
Scattering center modeling for low-detectable targets
Yanxi CHEN, Kunyi GUO, Guangliang XIAO, Xinqing SHENG
Journal of Systems Engineering and Electronics    2022, 33 (3): 511-521.   DOI: 10.23919/JSEE.2022.000051
Abstract245)   HTML105)    PDF(pc) (1649KB)(115)       Save

The scattering centers (SCs) of low-detectable targets (LDTs) have a low scattering intensity. It is difficult to build the SC model of an LDT using the existing methods because these methods mainly concern dominant SCs with strong scattering contributions. This paper presents an SC modeling approach to acquire the weak SCs of LDTs. We employ the induced currents at the LDT to search SCs, and the joint time-frequency transform together with the Hough transform to separate the scattering contributions of different SCs. Particle swarm optimization (PSO) is applied to improve the estimation results of SCs. The accuracy of the SC model built by this approach is verified by a full-wave numerical method. The validation results show that the SC model of the LDT can precisely simulate the signatures of high-resolution images, such as high-resolution range profile and inverse synthetic aperture radar (ISAR) images.

Table and Figures | Reference | Related Articles | Metrics
GNSS array receiver faced with overloaded interferences: anti-jamming performance and the incident directions of interferences
Jie WANG, Wenxiang LIU, Feiqiang CHEN, Zukun LU, Gang OU
Journal of Systems Engineering and Electronics    2023, 34 (2): 335-341.   DOI: 10.23919/JSEE.2022.000072
Abstract80)   HTML4)    PDF(pc) (6101KB)(109)       Save

Anti-jamming solutions based on antenna arrays enhance the anti-jamming ability and the robustness of global navigation satellite system (GNSS) receiver remarkably. However, the performance of the receiver will deteriorate significantly in the overloaded interferences scenario. We define the overloaded interferences scenario as where the number of interferences is more than or equal to the number of antenna arrays elements. In this paper, the effect mechanism of interferences with different incident directions is found by studying the anti-jamming performance of the adaptive space filter. The theoretical analysis and conclusions, which are first validated through numerical examples, reveal the relationships between the optimal weight vector and the eigenvectors of the input signal autocorrelation matrix, the relationships between the interference cancellation ratio (ICR), the signal to interference and noise power ratio (SINR) of the adaptive space filter output and the number of interferences, the eigenvalues of the input signal autocorrelation matrix. In addition, two simulation experiments are utilized to further corroborate the theoretical findings through soft anti-jamming receiver. The simulation results match well with the theoretical analysis results, thus validating the effect mechanism of overloaded interferences. The simulation results show that, for a four elements circular array, the performance difference is up to 19 dB with different incident directions of interferences. Anti-jamming performance evaluation and jamming deployment optimization can obtain more accurate and efficient results by using the conclusions.

Table and Figures | Reference | Related Articles | Metrics
Design and analysis of active disturbance rejection control for time-delay systems using frequency-sweeping
Yongshuai WANG, Zengqiang CHEN, Mingwei SUN, Qinglin SUN
Journal of Systems Engineering and Electronics    2023, 34 (2): 479-491.   DOI: 10.23919/JSEE.2023.000046
Abstract77)   HTML1)    PDF(pc) (6392KB)(108)       Save

For the typical first-order systems with time-delay, this paper explors the control capability of linear active disturbance rejection control (LADRC). Firstly, the critical time-delay of LADRC is analyzed using the frequency-sweeping method and the Routh criterion, and the stable time-delay interval starting from zero is accurately obtained, which reveals the limitations of general LADRC on large time-delay. Then in view of the large time-delay, an LADRC controller is developed and verified to be effective, along with the robustness analysis. Finally, numerical simulations show the accuracy of critical time-delay, and demonstrate the effectiveness and robustness of the proposed controller compared with other modified LADRCs.

Table and Figures | Reference | Related Articles | Metrics
Minimum-energy leader-following formation of distributed multi-agent systems with communication constraints
Donghao QIN, Le WANG, Jiuan GAO, Jianxiang XI
Journal of Systems Engineering and Electronics    2023, 34 (6): 1419-1431.   DOI: 10.23919/JSEE.2023.000141
Abstract106)   HTML4)    PDF(pc) (4223KB)(108)       Save

This paper concerns minimum-energy leader-following formation design and analysis problems of distributed multi-agent systems (DMASs) subjected to randomly switching topologies and aperiodic communication pauses. The critical feature of this paper is that the energy consumption during the formation control process is restricted by the minimum-energy constraint in the sense of the linear matrix inequality. Firstly, the leader-following formation control protocol is proposed based on the relative state information of neighboring agents, where the total energy consumption is considered. Then, minimum-energy leader-following formation design and analysis criteria are presented in the form of the linear matrix inequality, which can be checked by the generalized eigenvalue method. Especially, the value of the minimum-energy constraint is determined. An illustrative simulation is provided to show the effectiveness of the main results.

Table and Figures | Reference | Related Articles | Metrics
An evaluation method of contribution rate based on fuzzy Bayesian networks for equipment system-of-systems architecture
Renjie XU, Xin LIU, Donghao CUI, Jian XIE, Lin GONG
Journal of Systems Engineering and Electronics    2023, 34 (3): 574-587.   DOI: 10.23919/JSEE.2023.000081
Abstract101)   HTML12)    PDF(pc) (5118KB)(107)       Save

The contribution rate of equipment system-of-systems architecture (ESoSA) is an important index to evaluate the equipment update, development, and architecture optimization. Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems (ESoS), and the Bayesian network is an effective tool to solve the uncertain information, a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network (FBN) is proposed. Firstly, based on the operation loop theory, an ESoSA is constructed considering three aspects: reconnaissance equipment, decision equipment, and strike equipment. Next, the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information. Furthermore, the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA, and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established. Finally, the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA. Compared with traditional methods, the evaluation method based on FBN takes various failure states of equipment into consideration, is free of acquiring accurate probability of traditional equipment failure, and models the uncertainty of the relationship between equipment. The proposed method not only supplements and improves the ESoSA contribution rate assessment method, but also broadens the application scope of the Bayesian network.

Table and Figures | Reference | Related Articles | Metrics
Network-based structure optimization method of the anti-aircraft system
Qingsong ZHAO, Junyi DING, Jichao LI, Huachao LI, Boyuan XIA
Journal of Systems Engineering and Electronics    2023, 34 (2): 374-395.   DOI: 10.23919/JSEE.2023.000019
Abstract90)   HTML6)    PDF(pc) (7289KB)(102)       Save

The anti-aircraft system plays an irreplaceable role in modern combat. An anti-aircraft system consists of various types of functional entities interacting to destroy the hostile aircraft moving in high speed. The connecting structure of combat entities in it is of great importance for supporting the normal process of the system. In this paper, we explore the optimizing strategy of the structure of the anti-aircraft network by establishing extra communication channels between the combat entities. Firstly, the thought of combat network model (CNM) is borrowed to model the anti-aircraft system as a heterogeneous network. Secondly, the optimization objectives are determined as the survivability and the accuracy of the system. To specify these objectives, the information chain and accuracy chain are constructed based on CNM. The causal strength (CAST) logic and influence network (IN) are introduced to illustrate the establishment of the accuracy chain. Thirdly, the optimization constraints are discussed and set in three aspects: time, connection feasibility and budget. The time constraint network (TCN) is introduced to construct the timing chain and help to detect the timing consistency. Then, the process of the multi-objective optimization of the structure of the anti-aircraft system is designed. Finally, a simulation is conducted to prove the effectiveness and feasibility of the proposed method. Non-dominated sorting based genetic algorithm-II (NSGA2) is used to solve the multi-objective optimization problem and two other algorithms including non-dominated sorting based genetic algorithm-III (NSGA3) and strength Pareto evolutionary algorithm-II (SPEA2) are employed as comparisons. The deciders and system builders can make the anti-aircraft system improved in the survivability and accuracy in the combat reality.

Table and Figures | Reference | Related Articles | Metrics
Pythagorean probabilistic hesitant triangular fuzzy aggregation operators with applications in multiple attribute decision making
Fuping LIAO, Wu LI, Gang LIU, Xiaoqiang ZHOU
Journal of Systems Engineering and Electronics    2023, 34 (2): 422-438.   DOI: 10.23919/JSEE.2023.000015
Abstract70)   HTML0)    PDF(pc) (4796KB)(101)       Save

As a generalization of fuzzy set, hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information. As modern socioeconomic decision-making problems are becoming more and more complex, it also becomes more and more difficult to appropriately depict decision makers’ cognitive information in decision-making process. In order to describe the decision information more comprehensively, we define a pythagorean probabilistic hesitant triangular fuzzy set (PPHTFS) by combining the pythagorean triangular fuzzy set and the probabilistic hesitant fuzzy set. Firstly, the basic operation and scoring function of the pythagorean probabilistic hesitant triangular fuzzy element (PPHTFE) are proposed, and the comparison rule of two PPHTFEs is given. Then, some pythagorean probabilistic hesitant triangular fuzzy aggregation operators are developed, and their properties are also studied. Finally, a multi-attribute decision-making (MADM) model is constructed based on the proposed operators under the pythagorean probabilistic hesitant triangular fuzzy information, and an illustration example is given to demonstrate the practicability and validity of the proposed decision-making method.

Table and Figures | Reference | Related Articles | Metrics
Threshold-type memristor-based crossbar array design and its application in handwritten digit recognition
Qingjian LI, Yan LIANG, Zhenzhou LU, Guangyi WANG
Journal of Systems Engineering and Electronics    2023, 34 (2): 324-334.   DOI: 10.23919/JSEE.2023.000018
Abstract87)   HTML3)    PDF(pc) (6002KB)(100)       Save

Neuromorphic computing simulates the operation of biological brain function for information processing and can potentially solve the bottleneck of the Von Neumann architecture. Inspired by the real characteristics of physical memristive devices, we propose a threshold-type nonlinear voltage-controlled memristor mathematical model which is used to design a novel memristor-based crossbar array. The presented crossbar array can simulate the synaptic weight in real number field rather than only positive number field. Theoretical analysis and simulation results of a 2×2 image inversion operation validate the feasibility of the proposed crossbar array and the necessary training and inference functions. Finally, the presented crossbar array is used to construct the neural network and then applied in the handwritten digit recognition. The Mixed National Institute of Standards and Technology (MNIST) database is adopted to train this neural network and it achieves a satisfactory accuracy.

Table and Figures | Reference | Related Articles | Metrics
Sparsity-based efficient simulation of cluster targets electromagnetic scattering
Yuguang TIAN, Yixin LIU, Xuan CHEN, Penghui CHEN, Jun WANG, Junwen CHEN
Journal of Systems Engineering and Electronics    2023, 34 (2): 299-306.   DOI: 10.23919/JSEE.2023.000055
Abstract78)   HTML5)    PDF(pc) (9061KB)(98)       Save

An efficient and real-time simulation method is proposed for the dynamic electromagnetic characteristics of cluster targets to meet the requirements of engineering practical applications. First, the coordinate transformation method is used to establish a geometric model of the observation scene, which is described by the azimuth angles and elevation angles of the radar in the target reference frame and the attitude angles of the target in the radar reference frame. Then, an approach for dynamic electromagnetic scattering simulation is proposed. Finally, a fast-computing method based on sparsity in the time domain, space domain, and frequency domain is proposed. The method analyzes the sparsity-based dynamic scattering characteristic of the typical cluster targets. The error between the sparsity-based method and the benchmark is small, proving the effectiveness of the proposed method.

Table and Figures | Reference | Related Articles | Metrics
Adaptive dynamic reconfiguration mechanism of unmanned swarm topology based on an evolutionary game
Minggang YU, Yanjie NIU, Xueda LIU, Dongge ZHANG, Peng ZHENG, Ming HE, Ling LUO
Journal of Systems Engineering and Electronics    2023, 34 (3): 598-614.   DOI: 10.23919/JSEE.2023.000041
Abstract113)   HTML7)    PDF(pc) (7633KB)(94)       Save

Autonomous cooperation of unmanned swarms is the research focus on “new combat forces” and “disruptive technologies” in military fields. The mechanism design is the fundamental way to realize autonomous cooperation. Facing the realistic requirements of a swarm network dynamic adjustment under the background of high dynamics and strong confrontation and aiming at the optimization of the coordination level, an adaptive dynamic reconfiguration mechanism of unmanned swarm topology based on an evolutionary game is designed. This paper analyzes military requirements and proposes the basic framework of autonomous cooperation of unmanned swarms, including the emergence of swarm intelligence, information network construction and collaborative mechanism design. Then, based on the framework, the adaptive dynamic reconfiguration mechanism is discussed in detail from two aspects: topology dynamics and strategy dynamics. Next, the unmanned swarms’ community network is designed, and the network characteristics are analyzed. Moreover, the mechanism characteristics are analyzed by numerical simulation, focusing on the impact of key parameters, such as cost, benefit coefficient and adjustment rate on the level of swarm cooperation. Finally, the conclusion is made, which is expected to provide a theoretical reference and decision support for cooperative mode design and combat effectiveness generation of unmanned swarm operations.

Table and Figures | Reference | Related Articles | Metrics
Relational graph location network for multi-view image localization
Yukun YANG, Xiangdong LIU
Journal of Systems Engineering and Electronics    2023, 34 (2): 460-468.   DOI: 10.23919/JSEE.2023.000050
Abstract66)   HTML0)    PDF(pc) (5188KB)(87)       Save

In multi-view image localization task, the features of the images captured from different views should be fused properly. This paper considers the classification-based image localization problem. We propose the relational graph location network (RGLN) to perform this task. In this network, we propose a heterogeneous graph construction approach for graph classification tasks, which aims to describe the location in a more appropriate way, thereby improving the expression ability of the location representation module. Experiments show that the expression ability of the proposed graph construction approach outperforms the compared methods by a large margin. In addition, the proposed localization method outperforms the compared localization methods by around 1.7% in terms of meter-level accuracy.

Table and Figures | Reference | Related Articles | Metrics
Gaussian process regression-based quaternion unscented Kalman robust filter for integrated SINS/GNSS
Xu LYU, Baiqing HU, Yongbin DAI, Mingfang SUN, Yi LIU, Duanyang GAO
Journal of Systems Engineering and Electronics    2022, 33 (5): 1079-1088.   DOI: 10.23919/JSEE.2022.000105
Abstract162)   HTML8)    PDF(pc) (5227KB)(85)       Save

High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system (SINS/GNSS) integrated navigation system, and its estimation plays an important role in the performance evaluation of the navigation system. Traditional filter estimation methods usually assume that the measurement noise conforms to the Gaussian distribution, without considering the influence of the pollution introduced by the GNSS signal, which is susceptible to external interference. To address this problem, a high-precision filter estimation method using Gaussian process regression (GPR) is proposed to enhance the prediction and estimation capability of the unscented quaternion estimator (USQUE) to improve the navigation accuracy. Based on the advantage of the GPR machine learning function, the estimation performance of the sliding window for model training is measured. This method estimates the output of the observation information source through the measurement window and realizes the robust measurement update of the filter. The combination of GPR and the USQUE algorithm establishes a robust mechanism framework, which enhances the robustness and stability of traditional methods. The results of the trajectory simulation experiment and SINS/GNSS car-mounted tests indicate that the strategy has strong robustness and high estimation accuracy, which demonstrates the effectiveness of the proposed method.

Table and Figures | Reference | Related Articles | Metrics