This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle (UAV) swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs ’ actuator and sensor. The fixed-wing UAV swarm under consideration is organized as a “multi-leader-multi-follower” structure, in which only several leaders can obtain the dynamic target information while others only receive the neighbors’ information through the communication network. To simultaneously realize the formation, containment, and dynamic target tracking, a two-layer control framework is adopted to decouple the problem into two subproblems: reference trajectory generation and trajectory tracking. In the upper layer, a distributed finite-time estimator (DFTE) is proposed to generate each UAV ’s reference trajectory in accordance with the control objective. Subsequently, a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer, where a novel adaptive extended super-twisting (AESTW) algorithm with a finite-time extended state observer (FTESO) is involved in solving the robust trajectory tracking control problem under model uncertainties, actuator, and sensor faults. The proposed controller simultaneously guarantees rapidness and enhances the system ’s robustness with fewer chattering effects. Finally, corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme.
With the rapid development of informatization, autonomy and intelligence, unmanned swarm formation intelligent operations will become the main combat mode of future wars. Typical unmanned swarm formations such as ground-based directed energy weapon formations, space-based kinetic energy weapon formations, and sea-based carrier-based formations have become the trump card for winning future wars. In a complex confrontation environment, these sophisticated weapon formation systems can precisely strike mobile threat group targets, making them extreme deterrents in joint combat applications. Based on this, first, this paper provides a comprehensive summary of the outstanding advantages, strategic position and combat style of unmanned clusters in joint warfare to highlight their important position in future warfare. Second, a detailed analysis of the technological breakthroughs in four key areas, situational awareness, heterogeneous coordination, mixed combat, and intelligent assessment of typical unmanned aerial vehicle (UAV) swarms in joint warfare, is presented. An in-depth analysis of the UAV swarm communication networking operating mechanism during joint warfare is provided to lay the theoretical foundation for subsequent cooperative tracking and control. Then, an in-depth analysis of the shut-in technology requirements of UAV clusters in joint warfare is provided to lay a theoretical foundation for subsequent cooperative tracking control. Finally, the technical requirements of UAV clusters in joint warfare are analysed in depth so the key technologies can form a closed-loop kill chain system and provide theoretical references for the study of intelligent command operations.
By deploying the ubiquitous and reliable coverage of low Earth orbit (LEO) satellite networks using optical inter satellite link (OISL), computation offloading services can be provided for any users without proximal servers, while the resource limitation of both computation and storage on satellites is the important factor affecting the maximum task completion time. In this paper, we study a delay-optimal multi-satellite collaborative computation offloading scheme that allows satellites to actively migrate tasks among themselves by employing the high-speed OISLs, such that tasks with long queuing delay will be served as quickly as possible by utilizing idle computation resources in the neighborhood. To satisfy the delay requirement of delay-sensitive task, we first propose a deadline-aware task scheduling scheme in which a priority model is constructed to sort the order of tasks being served based on its deadline, and then a delay-optimal collaborative offloading scheme is derived such that the tasks which cannot be completed locally can be migrated to other idle satellites. Simulation results demonstrate the effectiveness of our multi-satellite collaborative computation offloading strategy in reducing task complement time and improving resource utilization of the LEO satellite network.
In this paper, a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented, focusing on the challenges posed by sea clutter and multipath scattering. The performance of the radar detection methods under sea clutter, multipath, and combined conditions is categorized and summarized, and future research directions are outlined to enhance radar detection performance for low–altitude targets in maritime environments.
Air-to-air combat tactical decisions for multiple unmanned aerial vehicles (ACTDMU) are a key decision-making step in beyond visual range combat. Complex influencing factors, strong antagonism and real-time requirements need to be considered in the ACTDMU problem. In this paper, we propose a multicriteria game approach to ACTDMU. This approach consists of a multicriteria game model and a Pareto Nash equilibrium algorithm. In this model, we form the strategy profiles for the integration of air-to-air combat tactics and weapon target assignment strategies by considering the correlation between them, and we design the vector payoff functions based on predominance factors. We propose a algorithm of Pareto Nash equilibrium based on preference relations using threshold constraints (PNE-PRTC), and we prove that the solutions obtained by this algorithm are refinements of Pareto Nash equilibrium solutions. The numerical experiments indicate that PNE-PRTC algorithm is considerably faster than the baseline algorithms and the performance is better. Especially on large-scale instances, the Pareto Nash equilibrium solutions can be calculated by PNE-PRTC algorithm at the second level. The simulation experiments show that the multicriteria game approach is more effective than one-side decision approaches such as multiple-attribute decision-making and randomly chosen decisions.
In the process of performing a task, autonomous unmanned systems face the problem of scene changing, which requires the ability of real-time decision-making under dynamically changing scenes. Therefore, taking the unmanned system coordinative region control operation as an example, this paper combines knowledge representation with probabilistic decision-making and proposes a role-based Bayesian decision model for autonomous unmanned systems that integrates scene cognition and individual preferences. Firstly, according to utility value decision theory, the role-based utility value decision model is proposed to realize task coordination according to the preference of the role that individual is assigned. Then, multi-entity Bayesian network is introduced for situation assessment, by which scenes and their uncertainty related to the operation are semantically described, so that the unmanned systems can conduct situation awareness in a set of scenes with uncertainty. Finally, the effectiveness of the proposed method is verified in a virtual task scenario. This research has important reference value for realizing scene cognition, improving cooperative decision-making ability under dynamic scenes, and achieving swarm level autonomy of unmanned systems.
Global Navigation Satellite System (GNSS)-based passive radar (GBPR) has been widely used in remote sensing applications. However, for moving target detection (MTD), the quadratic phase error (QPE) introduced by the non-cooperative target motion is usually difficult to be compensated, as the low power level of the GBPR echo signal renders the estimation of the Doppler rate less effective. Consequently, the moving target in GBPR image is usually defocused, which aggravates the difficulty of target detection even further. In this paper, a spawning particle filter (SPF) is proposed for defocused MTD. Firstly, the measurement model and the likelihood ratio function (LRF) of the defocused point-like target image are deduced. Then, a spawning particle set is generated for subsequent target detection, with reference to traditional particles in particle filter (PF) as their parent. After that, based on the PF estimator, the SPF algorithm and its sequential Monte Carlo (SMC) implementation are proposed with a novel amplitude estimation method to decrease the target state dimension. Finally, the effectiveness of the proposed SPF is demonstrated by numerical simulations and preliminary experimental results, showing that the target range and Doppler can be estimated accurately.
Recognition of pulse repetition interval (PRI) modulation is a fundamental task in the interpretation of radar intentions. However, the existing PRI modulation recognition methods mainly focus on single-label classification of PRI sequences. The prerequisite for the effectiveness of these methods is that the PRI sequences are perfectly divided according to different modulation types before identification, while the actual situation is that radar pulses reach the receiver continuously, and there is no completely reliable method to achieve this division in the case of non-cooperative reception. Based on the above actual needs, this paper implements an algorithm based on the recurrence plot technique and the multi-target detection model, which does not need to divide the PRI sequence in advance. Compared with the sliding window method, it can more effectively realize the recognition of the dynamically varying PRI modulation.
Aiming at the suppression of enemy air defense (SEAD) task under the complex and complicated combat scenario, the spatiotemporal cooperative path planning methods are studied in this paper. The major research contents include optimal path points generation, path smoothing and cooperative rendezvous. In the path points generation part, the path points availability testing algorithm and the path segments availability testing algorithm are designed, on this foundation, the swarm intelligence-based path point generation algorithm is utilized to generate the optimal path. In the path smoothing part, taking terminal attack angle constraint and maneuverability constraint into consideration, the Dubins curve is introduced to smooth the path segments. In cooperative rendezvous part, we take estimated time of arrival requirement constraint and flight speed range constraint into consideration, the speed control strategy and flight path control strategy are introduced, further, the decoupling scheme of the circling maneuver and detouring maneuver is designed, in this case, the maneuver ways, maneuver point, maneuver times, maneuver path and flight speed are determined. Finally, the simulation experiments are conducted and the acquired results reveal that the time-space cooperation of multiple unmanned aeriel vehicles (UAVs) is effectively realized, in this way, the combat situation suppression against the enemy can be realized in SEAD scenarios.
Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver. To reduce the computational complexity and latency of code acquisition, this paper proposes an efficient scheme employing sparse Fourier transform (SFT) and the relevant hardware architecture for field programmable gate array (FPGA) and application-specific integrated circuit (ASIC) implementation. Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure. Compared with the existing code acquisition approaches, it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.
The perception module of advanced driver assistance systems plays a vital role. Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer. This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme. A binocular stereo vision sensor composed of two cameras and a light deterction and ranging (LiDAR) sensor is used to jointly perceive the environment, and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map. This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors. Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle (UAV) real-time path planning problem, a real-time UAV path planning algorithm based on long short-term memory (RPP-LSTM) network is proposed, which combines the memory characteristics of recurrent neural network (RNN) and the deep reinforcement learning algorithm. LSTM networks are used in this algorithm as Q-value networks for the deep Q network (DQN) algorithm, which makes the decision of the Q-value network has some memory. Thanks to LSTM network, the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment. Besides, the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning, so that the UAV can more reasonably perform path planning. Simulation verification shows that compared with the traditional feed-forward neural network (FNN) based UAV autonomous path planning algorithm, the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.
Deep neural networks (DNNs) have achieved great success in many data processing applications. However, high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices, and it is not environmental-friendly with much power cost. In this paper, we focus on low-rank optimization for efficient deep learning techniques. In the space domain, DNNs are compressed by low rank approximation of the network parameters, which directly reduces the storage requirement with a smaller number of network parameters. In the time domain, the network parameters can be trained in a few subspaces, which enables efficient training for fast convergence. The model compression in the spatial domain is summarized into three categories as pre-train, pre-set, and compression-aware methods, respectively. With a series of integrable techniques discussed, such as sparse pruning, quantization, and entropy coding, we can ensemble them in an integration framework with lower computational complexity and storage. In addition to summary of recent technical advances, we have two findings for motivating future works. One is that the effective rank, derived from the Shannon entropy of the normalized singular values, outperforms other conventional sparse measures such as the $ \ell_1 $ norm for network compression. The other is a spatial and temporal balance for tensorized neural networks. For accelerating the training of tensorized neural networks, it is crucial to leverage redundancy for both model compression and subspace training.
Deep learning has achieved excellent results in various tasks in the field of computer vision, especially in fine-grained visual categorization. It aims to distinguish the subordinate categories of the label-level categories. Due to high intra-class variances and high inter-class similarity, the fine-grained visual categorization is extremely challenging. This paper first briefly introduces and analyzes the related public datasets. After that, some of the latest methods are reviewed. Based on the feature types, the feature processing methods, and the overall structure used in the model, we divide them into three types of methods: methods based on general convolutional neural network (CNN) and strong supervision of parts, methods based on single feature processing, and methods based on multiple feature processing. Most methods of the first type have a relatively simple structure, which is the result of the initial research. The methods of the other two types include models that have special structures and training processes, which are helpful to obtain discriminative features. We conduct a specific analysis on several methods with high accuracy on public datasets. In addition, we support that the focus of the future research is to solve the demand of existing methods for the large amount of the data and the computing power. In terms of technology, the extraction of the subtle feature information with the burgeoning vision transformer (ViT) network is also an important research direction.
The acquisition, analysis, and prediction of the radar cross section (RCS) of a target have extremely important strategic significance in the military. However, the RCS values at all azimuths are hardly accessible for non-cooperative targets, due to the limitations of radar observation azimuth and detection resources. Despite their efforts to predict the azimuth-dimensional RCS value, traditional methods based on statistical theory fails to achieve the desired results because of the azimuth sensitivity of the target RCS. To address this problem, an improved neural basis expansion analysis for interpretable time series forecasting (N-BEATS) network considering the physical model prior is proposed to predict the azimuth-dimensional RCS value accurately. Concretely, physical model-based constraints are imposed on the network by constructing a scattering-center module based on the target scattering-center model. Besides, a superimposed seasonality module is involved to better capture high-frequency information, and augmenting the training set provides complementary information for learning predictions. Extensive simulations and experimental results are provided to validate the effectiveness of the proposed method.
This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering, i.e., unmanned aerial vehicle (UAV) formation flight system. Firstly, from the theoretical point of view, consider one nonlinear closed-loop system with a nonlinear plant and nonlinear feed-forward controller simultaneously. To avoid the complex identification process for that nonlinear plant, a nonlinear direct data-driven control strategy is proposed to design that nonlinear feed-forward controller only through the input-output measured data sequence directly, whose detailed explicit forms are model inverse method and approximated analysis method. Secondly, from the practical point of view, after reviewing the UAV formation flight system, nonlinear direct data-driven control is applied in designing the formation controller, so that the followers can track the leader’s desired trajectory during one small time instant only through solving one data fitting problem. Since most natural phenomena have nonlinear properties, the direct method must be the better one. Corresponding system identification and control algorithms are required to be proposed for those nonlinear systems, and the direct nonlinear controller design is the purpose of this paper.
To ensure safe flight of multiple fixed-wing unmanned aerial vehicles (UAVs) formation, considering trajectory planning and formation control together, a leader trajectory planning method based on the sparse A* algorithm is introduced. Firstly, a formation controller based on prescribed performance theory is designed to control the transient and steady formation configuration, as well as the formation forming time, which not only can form the designated formation configuration but also can guarantee collision avoidance and terrain avoidance theoretically. Next, considering the constraints caused by formation controller on trajectory planning such as the safe distance, turn angle and step length, as well as the constraint of formation shape, a leader trajectory planning method based on sparse A* algorithm is proposed. Simulation results show that the UAV formation can arrive at the destination safely with a short trajectory no matter keeping the formation or encountering formation transformation.
Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility. However, beam hopping causes the traditional continuous time-division multiplexing signal in the forward downlink to become a burst signal, satellite terminal receivers need to solve multiple key issues such as burst signal rapid synchronization and high-performance reception. Firstly, this paper analyzes the key issues of burst communication for traffic signals in beam hopping systems, and then compares and studies typical carrier synchronization algorithms for burst signals. Secondly, combining the requirements of beam-hopping communication systems for efficient burst and low signal-to-noise ratio reception of downlink signals in forward links, a decoding assisted bidirectional variable parameter iterative carrier synchronization technique is proposed, which introduces the idea of iterative processing into carrier synchronization. Aiming at the technical characteristics of communication signal carrier synchronization, a new technical approach of bidirectional variable parameter iteration is adopted, breaking through the traditional understanding that loop structures cannot adapt to low signal-to-noise ratio burst demodulation. Finally, combining the DVB-S2X standard physical layer frame format used in high throughput satellite communication systems, the research and performance simulation are conducted. The results show that the new technology proposed in this paper can significantly shorten the carrier synchronization time of burst signals, achieve fast synchronization of low signal-to-noise ratio burst signals, and have the unique advantage of flexible and adjustable parameters.
Long-time coherent integration (LTCI) is an effective way for radar maneuvering target detection, but it faces the problem of a large number of search parameters and large amount of calculation. Realizing the simultaneous compensation of the range and Doppler migrations in complex clutter background, and at the same time improving the calculation efficiency has become an urgent problem to be solved. The sparse transformation theory is introduced to LTCI in this paper, and a non-parametric searching sparse LTCI (SLTCI) based maneuvering target detection method is proposed. This method performs time reversal (TR) and second-order Keystone transform (SKT) in the range frequency & slow-time data to complete high-order range walk compensation, and achieves the coherent integration of maneuvering target across range and Doppler units via the robust sparse fractional Fourier transform (RSFRFT). It can compensate for the nonlinear range migration caused by high-order motion. S-band and X-band radar data measured in sea clutter background are used to verify the detection performance of the proposed method, which can achieve better detection performance of maneuvering targets with less computational burden compared with several popular integration methods.
This paper concerns minimum-energy leader-following formation design and analysis problems of distributed multi-agent systems (DMASs) subjected to randomly switching topologies and aperiodic communication pauses. The critical feature of this paper is that the energy consumption during the formation control process is restricted by the minimum-energy constraint in the sense of the linear matrix inequality. Firstly, the leader-following formation control protocol is proposed based on the relative state information of neighboring agents, where the total energy consumption is considered. Then, minimum-energy leader-following formation design and analysis criteria are presented in the form of the linear matrix inequality, which can be checked by the generalized eigenvalue method. Especially, the value of the minimum-energy constraint is determined. An illustrative simulation is provided to show the effectiveness of the main results.
A generalized multiple-mode prolate spherical wave functions (PSWFs) multi-carrier with index modulation approach is proposed with the purpose of improving the spectral efficiency of PSWFs multi-carrier systems. The proposed method, based on the optimized multi-index modulation, does not limit the number of signals in the first and second constellations and abandons the concept of limiting the number of signals in different constellations. It successfully increases the spectrum efficiency of the system while expanding the number of modulation symbol combinations and the index dimension of PSWFs signals. The proposed method outperforms the PSWFs multi-carrier index modulation method based on optimized multiple indexes in terms of spectrum efficiency, but at the expense of system computational complexity and bit error performance. For example, with $n $=10 subcarriers and a bit error rate of 1×10?5, spectral efficiency can be raised by roughly 12.4%.
The electric-controlled metasurface antenna array (ECMSAA) with ultra-wideband frequency reconfigurable reflection suppression is proposed and realized. Firstly, an electric- controlled metasurface with ultra-wideband frequency reconfigurable in-phase reflection characteristics is designed. The element of the ECMSAA is constructed by loading the single electric-controlled metasurface unit on the conventional patch antenna element. The radiation properties of the conventional patch antenna and the reflection performance of electric-controlled metasurface are maintained when the antenna and the metasurface are integrated. Thus, the ECMSAA elements have excellent radiation properties and ultra-wideband frequency reconfigurable in-phase reflection characteristics simultaneously. To take a further step, a 6×10 ECMSAA is realized based on the designed metasurface antenna element. Simulated and measured results prove that the reflection of the ECMSAA is dynamically suppressed in the P and L bands. Meanwhile, high-gain and multi-polarization radiation properties of the ECMSAA are achieved. This design method not only realizes the frequency reconfigurable reflection suppression of the antenna array in the ultra-wide frequency band but also provides a way to develop an intelligent low-scattering antenna.
The dynamic weapon target assignment (DWTA) problem is of great significance in modern air combat. However, DWTA is a highly complex constrained multi-objective combinatorial optimization problem. An improved elitist non-dominated sorting genetic algorithm-II (NSGA-II) called the non-dominated shuffled frog leaping algorithm (NSFLA) is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints. In NSFLA, the shuffled frog leaping algorithm (SFLA) is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm (GA), displaying low optimization speed and heterogeneous space search defects. Two improvements have also been raised to promote the internal optimization performance of SFLA. Firstly, the local evolution scheme, a novel crossover mechanism, ensures that each individual participates in updating instead of only the worst ones, which can expand the diversity of the population. Secondly, a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search. Finally, the scheme is verified in various air combat scenarios. The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency, especially in many aircraft and the dynamic air combat environment.
A low-Earth-orbit (LEO) satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking. However, the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service. Moreover, the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas. To enhance the forwarding capability of satellite networks, we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall. Then, we propose a multi-region cooperative traffic scheduling algorithm. The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding, significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding. This algorithm can utilize all the global satellite resources and improve the utilization of network resources. We model the cooperative multi-region scheduling of large-scale LEO satellites. Based on the model, we build a system testbed using OMNET++ to compare the proposed method with existing techniques. The simulations show that our proposed method can reduce the packet loss probability by 30% and improve the resource utilization ratio by 3.69%.
Convolutional neural networks (CNNs) are well suited to bearing fault classification due to their ability to learn discriminative spectro-temporal patterns. However, gathering sufficient cases of faulty conditions in real-world engineering scenarios to train an intelligent diagnosis system is challenging. This paper proposes a fault diagnosis method combining several augmentation schemes to alleviate the problem of limited fault data. We begin by identifying relevant parameters that influence the construction of a spectrogram. We leverage the uncertainty principle in processing time-frequency domain signals, making it impossible to simultaneously achieve good time and frequency resolutions. A key determinant of this phenomenon is the window function’s choice and length used in implementing the short-time Fourier transform. The Gaussian, Kaiser, and rectangular windows are selected in the experimentation due to their diverse characteristics. The overlap parameter ’s size also influences the outcome and resolution of the spectrogram. A 50% overlap is used in the original data transformation, and ±25% is used in implementing an effective augmentation policy to which two-stage regular CNN can be applied to achieve improved performance. The best model reaches an accuracy of 99.98% and a cross-domain accuracy of 92.54%. When combined with data augmentation, the proposed model yields cutting-edge results.
Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recognition. To solve this problem, an optimized cooperative semi-supervised learning radar emitter recognition method based on a small amount of labeled data is developed. First, a small amount of labeled data are randomly sampled by using the bootstrap method, loss functions for three common deep learning networks are improved, the uniform distribution and cross-entropy function are combined to reduce the overconfidence of softmax classification. Subsequently, the dataset obtained after sampling is adopted to train three improved networks so as to build the initial model. In addition, the unlabeled data are preliminarily screened through dynamic time warping (DTW) and then input into the initial model trained previously for judgment. If the judgment results of two or more networks are consistent, the unlabeled data are labeled and put into the labeled data set. Lastly, the three network models are input into the labeled dataset for training, and the final model is built. As revealed by the simulation results, the semi-supervised learning method adopted in this paper is capable of exploiting a small amount of labeled data and basically achieving the accuracy of labeled data recognition.
Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments, a novel testing and prediction method based on dual-channel multi-frequency is proposed to improve the traditional two-tone test. Firstly, two signal generators are used to generate signals at the radio frequency (RF) by frequency scanning, and then a rapid measurement at the intermediate frequency (IF) output port is carried out to obtain a huge amount of sample data for the subsequent analysis. Secondly, the IF output response data are modeled and analyzed to construct the linear and nonlinear response constraint equations in the frequency domain and prediction models in the power domain, which provide the theoretical criteria for interpreting and predicting electromagnetic susceptibility (EMS) of the receiver. An experiment performed on a radar receiver confirms the reliability of the method proposed in this paper. It shows that the interference of each harmonic frequency and each order to the receiver can be identified and predicted with the sensitivity model. Based on this, fast and comprehensive evaluation and prediction of the receiver’s EMS in complex environment can be efficiently realized.
Based on the characteristics of high-end products, crowd-sourcing user stories can be seen as an effective means of gathering requirements, involving a large user base and generating a substantial amount of unstructured feedback. The key challenge lies in transforming abstract user needs into specific ones, requiring integration and analysis. Therefore, we propose a topic mining-based approach to categorize, summarize, and rank product requirements from user stories. Specifically, after determining the number of story categories based on pyLDAvis, we initially classify “I want to” phrases within user stories. Subsequently, classic topic models are applied to each category to generate their names, defining each post-classification user story category as a requirement. Furthermore, a weighted ranking function is devised to calculate the importance of each requirement. Finally, we validate the effectiveness and feasibility of the proposed method using 2 966 crowd-sourced user stories related to smart home systems.
A dynamic multi-beam resource allocation algorithm for large low Earth orbit (LEO) constellation based on on-board distributed computing is proposed in this paper. The allocation is a combinatorial optimization process under a series of complex constraints, which is important for enhancing the matching between resources and requirements. A complex algorithm is not available because that the LEO on-board resources is limited. The proposed genetic algorithm (GA) based on two-dimensional individual model and uncorrelated single paternal inheritance method is designed to support distributed computation to enhance the feasibility of on-board application. A distributed system composed of eight embedded devices is built to verify the algorithm. A typical scenario is built in the system to evaluate the resource allocation process, algorithm mathematical model, trigger strategy, and distributed computation architecture. According to the simulation and measurement results, the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91% in a typical scene. The response time is decreased by 40% compared with the conditional GA.
Time synchronization is one of the base techniques in wireless sensor networks (WSNs). This paper proposes a novel time synchronization protocol which is a robust consensus-based algorithm in the existence of transmission delay and packet loss. It compensates for transmission delay and packet loss firstly, and then, estimates clock skew and clock offset in two steps. Simulation and experiment results show that the proposed protocol can keep synchronization error below 2 μs in the grid network of 10 nodes or the random network of 90 nodes. Moreover, the synchronization accuracy in the proposed protocol can keep constant when the WSN works up to a month.
The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target’s motion state and size. A three-dimensional reconstruction method for the precession warhead via the micro-Doppler analysis and inverse Radon transform (IRT) is proposed in this paper. The precession parameters are extracted by the micro-Doppler analysis from three radars, and the IRT is used to estimate the size of targe. The scatterers of the target can be reconstructed based on the above parameters. Simulation experimental results illustrate the effectiveness of the proposed method in this paper.
With the extensive application of large-scale array antennas, the increasing number of array elements leads to the increasing dimension of received signals, making it difficult to meet the real-time requirement of direction of arrival (DOA) estimation due to the computational complexity of algorithms. Traditional subspace algorithms require estimation of the covariance matrix, which has high computational complexity and is prone to producing spurious peaks. In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements, this paper proposes a DOA estimation method based on Krylov subspace and weighted $ {l}_{1} $-norm. The method uses the multistage Wiener filter (MSWF) iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace, further uses the measurement matrix to reduce the dimensionality of the signal subspace observation, constructs a weighted matrix, and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted $ {l}_{1} $-norm to solve the target DOA. Simulation results show that the proposed method has high resolution under large array conditions, effectively suppresses spurious peaks, reduces computational complexity, and has good robustness for low signal to noise ratio (SNR) environment.
The detection of hypersonic targets usually confronts range migration (RM) issue before coherent integration (CI). The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition. However, with the increasing requirement of far-range detection, the time bandwidth product, which is corresponding to radar’s mean power, should be promoted in actual application. Thus, the echo signal generates the scale effect (SE) at large time bandwidth product situation, influencing the intra and inter pulse integration performance. To eliminate SE and correct RM, this paper proposes an effective algorithm, i.e., scaled location rotation transform (ScLRT). The ScLRT can remove SE to obtain the matching pulse compression (PC) as well as correct RM to complete CI via the location rotation transform, being implemented by seeking the actual rotation angle. Compared to the traditional coherent detection algorithms, ScLRT can address the SE problem to achieve better detection/estimation capabilities. At last, this paper gives several simulations to assess the viability of ScLRT.
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters, the accuracy and confidence of meteorology target detection are reduced. In this paper, a deep convolutional neural network (DCNN) is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input. For each weather radar image, the corresponding digital elevation model (DEM) image is extracted on basis of the radar antenna scanning parameters and plane position, and is further fed to the network as a supplement for ground clutter suppression. The features of actual meteorology targets are learned in each bottleneck module of the proposed network and convolved into deeper iterations in the forward propagation process. Then the network parameters are updated by the back propagation iteration of the training error. Experimental results on the real measured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors. Meanwhile, the network outputs are in good agreement with the expected meteorology detection results (labels). It is demonstrated that the proposed network would have a promising meteorology observation application with minimal effort on network variables or parameter changes.