This paper tackles the formation-containment control problem of fixed-wing unmanned aerial vehicle (UAV) swarm with model uncertainties for dynamic target tracking in three-dimensional space in the faulty case of UAVs ’ actuator and sensor. The fixed-wing UAV swarm under consideration is organized as a “multi-leader-multi-follower” structure, in which only several leaders can obtain the dynamic target information while others only receive the neighbors’ information through the communication network. To simultaneously realize the formation, containment, and dynamic target tracking, a two-layer control framework is adopted to decouple the problem into two subproblems: reference trajectory generation and trajectory tracking. In the upper layer, a distributed finite-time estimator (DFTE) is proposed to generate each UAV ’s reference trajectory in accordance with the control objective. Subsequently, a distributed composite robust fault-tolerant trajectory tracking controller is developed in the lower layer, where a novel adaptive extended super-twisting (AESTW) algorithm with a finite-time extended state observer (FTESO) is involved in solving the robust trajectory tracking control problem under model uncertainties, actuator, and sensor faults. The proposed controller simultaneously guarantees rapidness and enhances the system ’s robustness with fewer chattering effects. Finally, corresponding simulations are carried out to demonstrate the effectiveness and competitiveness of the proposed two-layer fault-tolerant cooperative control scheme.
With the rapid development of informatization, autonomy and intelligence, unmanned swarm formation intelligent operations will become the main combat mode of future wars. Typical unmanned swarm formations such as ground-based directed energy weapon formations, space-based kinetic energy weapon formations, and sea-based carrier-based formations have become the trump card for winning future wars. In a complex confrontation environment, these sophisticated weapon formation systems can precisely strike mobile threat group targets, making them extreme deterrents in joint combat applications. Based on this, first, this paper provides a comprehensive summary of the outstanding advantages, strategic position and combat style of unmanned clusters in joint warfare to highlight their important position in future warfare. Second, a detailed analysis of the technological breakthroughs in four key areas, situational awareness, heterogeneous coordination, mixed combat, and intelligent assessment of typical unmanned aerial vehicle (UAV) swarms in joint warfare, is presented. An in-depth analysis of the UAV swarm communication networking operating mechanism during joint warfare is provided to lay the theoretical foundation for subsequent cooperative tracking and control. Then, an in-depth analysis of the shut-in technology requirements of UAV clusters in joint warfare is provided to lay a theoretical foundation for subsequent cooperative tracking control. Finally, the technical requirements of UAV clusters in joint warfare are analysed in depth so the key technologies can form a closed-loop kill chain system and provide theoretical references for the study of intelligent command operations.
By deploying the ubiquitous and reliable coverage of low Earth orbit (LEO) satellite networks using optical inter satellite link (OISL), computation offloading services can be provided for any users without proximal servers, while the resource limitation of both computation and storage on satellites is the important factor affecting the maximum task completion time. In this paper, we study a delay-optimal multi-satellite collaborative computation offloading scheme that allows satellites to actively migrate tasks among themselves by employing the high-speed OISLs, such that tasks with long queuing delay will be served as quickly as possible by utilizing idle computation resources in the neighborhood. To satisfy the delay requirement of delay-sensitive task, we first propose a deadline-aware task scheduling scheme in which a priority model is constructed to sort the order of tasks being served based on its deadline, and then a delay-optimal collaborative offloading scheme is derived such that the tasks which cannot be completed locally can be migrated to other idle satellites. Simulation results demonstrate the effectiveness of our multi-satellite collaborative computation offloading strategy in reducing task complement time and improving resource utilization of the LEO satellite network.
In this paper, a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented, focusing on the challenges posed by sea clutter and multipath scattering. The performance of the radar detection methods under sea clutter, multipath, and combined conditions is categorized and summarized, and future research directions are outlined to enhance radar detection performance for low–altitude targets in maritime environments.
In the process of performing a task, autonomous unmanned systems face the problem of scene changing, which requires the ability of real-time decision-making under dynamically changing scenes. Therefore, taking the unmanned system coordinative region control operation as an example, this paper combines knowledge representation with probabilistic decision-making and proposes a role-based Bayesian decision model for autonomous unmanned systems that integrates scene cognition and individual preferences. Firstly, according to utility value decision theory, the role-based utility value decision model is proposed to realize task coordination according to the preference of the role that individual is assigned. Then, multi-entity Bayesian network is introduced for situation assessment, by which scenes and their uncertainty related to the operation are semantically described, so that the unmanned systems can conduct situation awareness in a set of scenes with uncertainty. Finally, the effectiveness of the proposed method is verified in a virtual task scenario. This research has important reference value for realizing scene cognition, improving cooperative decision-making ability under dynamic scenes, and achieving swarm level autonomy of unmanned systems.
Air-to-air combat tactical decisions for multiple unmanned aerial vehicles (ACTDMU) are a key decision-making step in beyond visual range combat. Complex influencing factors, strong antagonism and real-time requirements need to be considered in the ACTDMU problem. In this paper, we propose a multicriteria game approach to ACTDMU. This approach consists of a multicriteria game model and a Pareto Nash equilibrium algorithm. In this model, we form the strategy profiles for the integration of air-to-air combat tactics and weapon target assignment strategies by considering the correlation between them, and we design the vector payoff functions based on predominance factors. We propose a algorithm of Pareto Nash equilibrium based on preference relations using threshold constraints (PNE-PRTC), and we prove that the solutions obtained by this algorithm are refinements of Pareto Nash equilibrium solutions. The numerical experiments indicate that PNE-PRTC algorithm is considerably faster than the baseline algorithms and the performance is better. Especially on large-scale instances, the Pareto Nash equilibrium solutions can be calculated by PNE-PRTC algorithm at the second level. The simulation experiments show that the multicriteria game approach is more effective than one-side decision approaches such as multiple-attribute decision-making and randomly chosen decisions.
The perception module of advanced driver assistance systems plays a vital role. Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer. This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme. A binocular stereo vision sensor composed of two cameras and a light deterction and ranging (LiDAR) sensor is used to jointly perceive the environment, and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map. This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors. Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.
Deep neural networks (DNNs) have achieved great success in many data processing applications. However, high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices, and it is not environmental-friendly with much power cost. In this paper, we focus on low-rank optimization for efficient deep learning techniques. In the space domain, DNNs are compressed by low rank approximation of the network parameters, which directly reduces the storage requirement with a smaller number of network parameters. In the time domain, the network parameters can be trained in a few subspaces, which enables efficient training for fast convergence. The model compression in the spatial domain is summarized into three categories as pre-train, pre-set, and compression-aware methods, respectively. With a series of integrable techniques discussed, such as sparse pruning, quantization, and entropy coding, we can ensemble them in an integration framework with lower computational complexity and storage. In addition to summary of recent technical advances, we have two findings for motivating future works. One is that the effective rank, derived from the Shannon entropy of the normalized singular values, outperforms other conventional sparse measures such as the $ \ell_1 $ norm for network compression. The other is a spatial and temporal balance for tensorized neural networks. For accelerating the training of tensorized neural networks, it is crucial to leverage redundancy for both model compression and subspace training.
This paper proposes the nonlinear direct data-driven control from theoretical analysis and practical engineering, i.e., unmanned aerial vehicle (UAV) formation flight system. Firstly, from the theoretical point of view, consider one nonlinear closed-loop system with a nonlinear plant and nonlinear feed-forward controller simultaneously. To avoid the complex identification process for that nonlinear plant, a nonlinear direct data-driven control strategy is proposed to design that nonlinear feed-forward controller only through the input-output measured data sequence directly, whose detailed explicit forms are model inverse method and approximated analysis method. Secondly, from the practical point of view, after reviewing the UAV formation flight system, nonlinear direct data-driven control is applied in designing the formation controller, so that the followers can track the leader’s desired trajectory during one small time instant only through solving one data fitting problem. Since most natural phenomena have nonlinear properties, the direct method must be the better one. Corresponding system identification and control algorithms are required to be proposed for those nonlinear systems, and the direct nonlinear controller design is the purpose of this paper.
Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility. However, beam hopping causes the traditional continuous time-division multiplexing signal in the forward downlink to become a burst signal, satellite terminal receivers need to solve multiple key issues such as burst signal rapid synchronization and high-performance reception. Firstly, this paper analyzes the key issues of burst communication for traffic signals in beam hopping systems, and then compares and studies typical carrier synchronization algorithms for burst signals. Secondly, combining the requirements of beam-hopping communication systems for efficient burst and low signal-to-noise ratio reception of downlink signals in forward links, a decoding assisted bidirectional variable parameter iterative carrier synchronization technique is proposed, which introduces the idea of iterative processing into carrier synchronization. Aiming at the technical characteristics of communication signal carrier synchronization, a new technical approach of bidirectional variable parameter iteration is adopted, breaking through the traditional understanding that loop structures cannot adapt to low signal-to-noise ratio burst demodulation. Finally, combining the DVB-S2X standard physical layer frame format used in high throughput satellite communication systems, the research and performance simulation are conducted. The results show that the new technology proposed in this paper can significantly shorten the carrier synchronization time of burst signals, achieve fast synchronization of low signal-to-noise ratio burst signals, and have the unique advantage of flexible and adjustable parameters.
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle (UAV) real-time path planning problem, a real-time UAV path planning algorithm based on long short-term memory (RPP-LSTM) network is proposed, which combines the memory characteristics of recurrent neural network (RNN) and the deep reinforcement learning algorithm. LSTM networks are used in this algorithm as Q-value networks for the deep Q network (DQN) algorithm, which makes the decision of the Q-value network has some memory. Thanks to LSTM network, the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment. Besides, the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning, so that the UAV can more reasonably perform path planning. Simulation verification shows that compared with the traditional feed-forward neural network (FNN) based UAV autonomous path planning algorithm, the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.
This paper concerns minimum-energy leader-following formation design and analysis problems of distributed multi-agent systems (DMASs) subjected to randomly switching topologies and aperiodic communication pauses. The critical feature of this paper is that the energy consumption during the formation control process is restricted by the minimum-energy constraint in the sense of the linear matrix inequality. Firstly, the leader-following formation control protocol is proposed based on the relative state information of neighboring agents, where the total energy consumption is considered. Then, minimum-energy leader-following formation design and analysis criteria are presented in the form of the linear matrix inequality, which can be checked by the generalized eigenvalue method. Especially, the value of the minimum-energy constraint is determined. An illustrative simulation is provided to show the effectiveness of the main results.
Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver. To reduce the computational complexity and latency of code acquisition, this paper proposes an efficient scheme employing sparse Fourier transform (SFT) and the relevant hardware architecture for field programmable gate array (FPGA) and application-specific integrated circuit (ASIC) implementation. Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure. Compared with the existing code acquisition approaches, it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.
Aiming at evaluating and predicting rapidly and accurately a high sensitivity receiver’s adaptability in complex electromagnetic environments, a novel testing and prediction method based on dual-channel multi-frequency is proposed to improve the traditional two-tone test. Firstly, two signal generators are used to generate signals at the radio frequency (RF) by frequency scanning, and then a rapid measurement at the intermediate frequency (IF) output port is carried out to obtain a huge amount of sample data for the subsequent analysis. Secondly, the IF output response data are modeled and analyzed to construct the linear and nonlinear response constraint equations in the frequency domain and prediction models in the power domain, which provide the theoretical criteria for interpreting and predicting electromagnetic susceptibility (EMS) of the receiver. An experiment performed on a radar receiver confirms the reliability of the method proposed in this paper. It shows that the interference of each harmonic frequency and each order to the receiver can be identified and predicted with the sensitivity model. Based on this, fast and comprehensive evaluation and prediction of the receiver’s EMS in complex environment can be efficiently realized.
A low-Earth-orbit (LEO) satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking. However, the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service. Moreover, the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas. To enhance the forwarding capability of satellite networks, we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall. Then, we propose a multi-region cooperative traffic scheduling algorithm. The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding, significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding. This algorithm can utilize all the global satellite resources and improve the utilization of network resources. We model the cooperative multi-region scheduling of large-scale LEO satellites. Based on the model, we build a system testbed using OMNET++ to compare the proposed method with existing techniques. The simulations show that our proposed method can reduce the packet loss probability by 30% and improve the resource utilization ratio by 3.69%.
The detection of hypersonic targets usually confronts range migration (RM) issue before coherent integration (CI). The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition. However, with the increasing requirement of far-range detection, the time bandwidth product, which is corresponding to radar’s mean power, should be promoted in actual application. Thus, the echo signal generates the scale effect (SE) at large time bandwidth product situation, influencing the intra and inter pulse integration performance. To eliminate SE and correct RM, this paper proposes an effective algorithm, i.e., scaled location rotation transform (ScLRT). The ScLRT can remove SE to obtain the matching pulse compression (PC) as well as correct RM to complete CI via the location rotation transform, being implemented by seeking the actual rotation angle. Compared to the traditional coherent detection algorithms, ScLRT can address the SE problem to achieve better detection/estimation capabilities. At last, this paper gives several simulations to assess the viability of ScLRT.
The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target’s motion state and size. A three-dimensional reconstruction method for the precession warhead via the micro-Doppler analysis and inverse Radon transform (IRT) is proposed in this paper. The precession parameters are extracted by the micro-Doppler analysis from three radars, and the IRT is used to estimate the size of targe. The scatterers of the target can be reconstructed based on the above parameters. Simulation experimental results illustrate the effectiveness of the proposed method in this paper.
A dynamic multi-beam resource allocation algorithm for large low Earth orbit (LEO) constellation based on on-board distributed computing is proposed in this paper. The allocation is a combinatorial optimization process under a series of complex constraints, which is important for enhancing the matching between resources and requirements. A complex algorithm is not available because that the LEO on-board resources is limited. The proposed genetic algorithm (GA) based on two-dimensional individual model and uncorrelated single paternal inheritance method is designed to support distributed computation to enhance the feasibility of on-board application. A distributed system composed of eight embedded devices is built to verify the algorithm. A typical scenario is built in the system to evaluate the resource allocation process, algorithm mathematical model, trigger strategy, and distributed computation architecture. According to the simulation and measurement results, the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91% in a typical scene. The response time is decreased by 40% compared with the conditional GA.
With the extensive application of large-scale array antennas, the increasing number of array elements leads to the increasing dimension of received signals, making it difficult to meet the real-time requirement of direction of arrival (DOA) estimation due to the computational complexity of algorithms. Traditional subspace algorithms require estimation of the covariance matrix, which has high computational complexity and is prone to producing spurious peaks. In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements, this paper proposes a DOA estimation method based on Krylov subspace and weighted $ {l}_{1} $-norm. The method uses the multistage Wiener filter (MSWF) iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace, further uses the measurement matrix to reduce the dimensionality of the signal subspace observation, constructs a weighted matrix, and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted $ {l}_{1} $-norm to solve the target DOA. Simulation results show that the proposed method has high resolution under large array conditions, effectively suppresses spurious peaks, reduces computational complexity, and has good robustness for low signal to noise ratio (SNR) environment.
Time synchronization is one of the base techniques in wireless sensor networks (WSNs). This paper proposes a novel time synchronization protocol which is a robust consensus-based algorithm in the existence of transmission delay and packet loss. It compensates for transmission delay and packet loss firstly, and then, estimates clock skew and clock offset in two steps. Simulation and experiment results show that the proposed protocol can keep synchronization error below 2 μs in the grid network of 10 nodes or the random network of 90 nodes. Moreover, the synchronization accuracy in the proposed protocol can keep constant when the WSN works up to a month.
In engineering application, there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval (PRI). Therefore, if the training samples used to calculate the weight vector does not contain the jamming, then the jamming cannot be removed by adaptive spatial filtering. If the weight vector is constantly updated in the range dimension, the training data may contain target echo signals, resulting in signal cancellation effect. To cope with the situation that the training samples are contaminated by target signal, an iterative training sample selection method based on non-homogeneous detector (NHD) is proposed in this paper for updating the weight vector in entire range dimension. The principle is presented, and the validity is proven by simulation results.
In this paper, we propose an effective full array and sparse array adaptive beamforming scheme that can be applied for multiple desired signals based on the branch-and-bound algorithm. Adaptive beamforming for the multiple desired signals is realized by the improved Capon method. At the same time, the sidelobe constraint is added to reduce the sidelobe level. To reduce the pointing errors of multiple desired signals, the array response phase of the desired signal is firstly optimized by using auxilary variables while keeping the response amplitude unchanged. The whole design is formulated as a convex optimization problem solved by the branch-and-bound algorithm. In addition, the beamformer weight vector is penalized with the modified reweighted ${l_1}$-norm to achieve sparsity. Theoretical analysis and simulation results show that the proposed algorithm has lower sidelobe level, higher SINR, and less pointing error than the state-of-the-art methods in the case of a single expected signal and multiple desired signals.
This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and non-Gaussian sea clutter. The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters, and the target is modeled as a subspace range-spread target model. The persymmetric structure is used to model the clutter covariance matrix, in order to reduce the reliance on secondary data of the designed detectors. Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test (GLRT), Rao test, and Wald test. All the proposed detectors have constant false-alarm rate property with respect to the clutter texture, the speckle covariance matrix. Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments, and the proposed GLRT detector has the best detection performance under different parameters.
The electric-controlled metasurface antenna array (ECMSAA) with ultra-wideband frequency reconfigurable reflection suppression is proposed and realized. Firstly, an electric- controlled metasurface with ultra-wideband frequency reconfigurable in-phase reflection characteristics is designed. The element of the ECMSAA is constructed by loading the single electric-controlled metasurface unit on the conventional patch antenna element. The radiation properties of the conventional patch antenna and the reflection performance of electric-controlled metasurface are maintained when the antenna and the metasurface are integrated. Thus, the ECMSAA elements have excellent radiation properties and ultra-wideband frequency reconfigurable in-phase reflection characteristics simultaneously. To take a further step, a 6×10 ECMSAA is realized based on the designed metasurface antenna element. Simulated and measured results prove that the reflection of the ECMSAA is dynamically suppressed in the P and L bands. Meanwhile, high-gain and multi-polarization radiation properties of the ECMSAA are achieved. This design method not only realizes the frequency reconfigurable reflection suppression of the antenna array in the ultra-wide frequency band but also provides a way to develop an intelligent low-scattering antenna.
In this paper, a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed. Firstly, the Cameron decomposition is exploited to fuse the radar echoes of full polarization channels at the data level. Due to the artificial material structure on the surface of the target, it can be shown that the non-reciprocity of the target cell is stronger than that of the clutter cell. Then, based on the analysis of the decomposition results, a new feature with scattering geometry characteristics in polarization domain, denoted as Cameron polarization decomposition scattering weight (CPD-SW), is extracted as the test statistic, which can achieve more detailed descriptions of the clutter scattering characteristics utilizing the difference between their scattering types. Finally, the superiority of the proposed CPD-SW detector over traditional detectors in improving detection performance is verified by the IPIX measured dataset, which has strong stability under short-time observation in threshold detection and can also improve the separability of feature space zin anomaly detection.
Link16 data link is the communication standard of the joint tactical information distribution system (JTIDS) used by the U.S. military and North Atlantic Treaty Organization, which is applied as the opportunistic illuminator for passive radar in this paper. The time-domain expression of the Link16 signal is established, and its ambiguity function expression is derived. The time-delay dimension and Doppler dimension side peaks of which lead to the appearance of the false target during target detection. To solve the problem, the time-delay dimension and Doppler dimension side peaks suppression methods are proposed. For the problem that the conventional mismatched filter (MMF) cannot suppress the time-delay dimension side peaks, a neighborhood MMF (NMMF) is proposed. Experimental results demonstrate the effectiveness of the proposed methods.
The joint resource block (RB) allocation and power optimization problem is studied to maximize the sum-rate of the vehicle-to-vehicle (V2V) links in the device-to-device (D2D)-enabled V2V communication system, where one feasible cellular user (FCU) can share its RB with multiple V2V pairs. The problem is first formulated as a nonconvex mixed-integer nonlinear programming (MINLP) problem with constraint of the maximum interference power in the FCU links. Using the game theory, two coalition formation algorithms are proposed to accomplish V2V link partitioning and FCU selection, where the transferable utility functions are introduced to minimize the interference among the V2V links and the FCU links for the optimal RB allocation. The successive convex approximation (SCA) is used to transform the original problem into a convex one and the Lagrangian dual method is further applied to obtain the optimal transmit power of the V2V links. Finally, numerical results demonstrate the efficiency of the proposed resource allocation algorithm in terms of the system sum-rate.
With the new development trend of multi-resource coordinated Earth observation and the new goal of Earth observation application of “short response time, high observation accuracy, and wide coverage”, space-aeronautics cooperative complex task planning problem has become an urgent problem to be solved. The focus of this problem is to use multiple resources to perform collaborative observations on complex tasks. By analyzing the process from task assignment to receiving task observation results, we propose a multi-layer interactive task planning framework which is composed of a preprocessing method for complex tasks, a task allocation layer, a task planning layer, and a task coordination layer. According to the characteristics of the framework, a hybrid genetic parallel tabu (HGPT) algorithm is proposed on this basis. The algorithm uses genetic annealing algorithm (GAA), parallel tabu (PT) algorithm, and heuristic rules to achieve task allocation, task planning, and task coordination. At the same time, coding improvements, operator design, annealing operations, and parallel calculations are added to the algorithm. In order to verify the effectiveness of the algorithm, simulation experiments under complex task scenarios of different scales are carried out. Experimental results show that this method can effectively solve the problems of observing complex tasks. Meanwhile, the optimization effect and convergence speed of the HGPT is better than that of the related algorithms.
In this paper, an efficient unequal error protection (UEP) scheme for online fountain codes is proposed. In the build-up phase, the traversing-selection strategy is proposed to select the most important symbols (MIS). Then, in the completion phase, the weighted-selection strategy is applied to provide low overhead. The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme. Simulation results show that in terms of MIS and the least important symbols (LIS), when the bit error ratio is $ {10^{ - 4}} $, the proposed scheme can achieve $ 85{\text{% }} $ and $ 31.58{\text{% }} $ overhead reduction, respectively.
Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix. The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates. Relying on the two-step criteria, two adaptive detectors based on Gradient tests are proposed, in homogeneous and partially homogeneous clutter plus subspace interference, respectively. Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level. Numerical results show that, the proposed detectors have better performance than their existing counterparts, especially for mismatches in the signal steering vectors.
Existing specific emitter identification (SEI) methods based on hand-crafted features have drawbacks of losing feature information and involving multiple processing stages, which reduce the identification accuracy of emitters and complicate the procedures of identification. In this paper, we propose a deep SEI approach via multidimensional feature extraction for radio frequency fingerprints (RFFs), namely, RFFsNet-SEI. Particularly, we extract multidimensional physical RFFs from the received signal by virtue of variational mode decomposition (VMD) and Hilbert transform (HT). The physical RFFs and I-Q data are formed into the balanced-RFFs, which are then used to train RFFsNet-SEI. As introducing model-aided RFFs into neural network, the hybrid-driven scheme including physical features and I-Q data is constructed. It improves physical interpretability of RFFsNet-SEI. Meanwhile, since RFFsNet-SEI identifies individual of emitters from received raw data in end-to-end, it accelerates SEI implementation and simplifies procedures of identification. Moreover, as the temporal features and spectral features of the received signal are both extracted by RFFsNet-SEI, identification accuracy is improved. Finally, we compare RFFsNet-SEI with the counterparts in terms of identification accuracy, computational complexity, and prediction speed. Experimental results illustrate that the proposed method outperforms the counterparts on the basis of simulation dataset and real dataset collected in the anechoic chamber.
A terahertz (THz) wave transmitted through vegetation experiences both absorption and scattering caused by the air molecules and leaves. This paper presents the scattering attenuation characteristics of vegetation in a THz range. The theoretical path loss model near the vegetation yields the average attenuation of THz waves in a mixed channel composed of air and vegetation leaves. Furthermore, a simplified model of the vegetation structure is obtained for generic vegetation types based on a variety of parameters, such as leaf size, distribution, and moisture content. Finally, based on specific vegetation species and different levels of air humidity, the attenuation characteristics under different conditions are calculated, and the influence of different model parameters on the attenuation characteristics is obtained.
Acoustic source localization (ASL) and sound event detection (SED) are two widely pursued independent research fields. In recent years, in order to achieve a more complete spatial and temporal representation of sound field, sound event localization and detection (SELD) has become a very active research topic. This paper presents a deep learning-based multi-overlapping sound event localization and detection algorithm in three-dimensional space. Log-Mel spectrum and generalized cross-correlation spectrum are joined together in channel dimension as input features. These features are classified and regressed in parallel after training by a neural network to obtain sound recognition and localization results respectively. The channel attention mechanism is also introduced in the network to selectively enhance the features containing essential information and suppress the useless features. Finally, a thourough comparison confirms the efficiency and effectiveness of the proposed SELD algorithm. Field experiments show that the proposed algorithm is robust to reverberation and environment and can achieve higher recognition and localization accuracy compared with the baseline method.