Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (6): 1428-1440.doi: 10.23919/JSEE.2024.000096
• DEFENCE ELECTRONICS TECHNOLOGY • Previous Articles
Chuanfei ZANG1(), Yumiao WANG1(
), Xiang WANG1(
), Congan XU2,3(
), Guolong CUI1,*(
)
Received:
2023-01-03
Online:
2024-12-18
Published:
2025-01-14
Contact:
Guolong CUI
E-mail:zangcf2017@163.com;wangyumiao@std.uestc.edu.cn;w_xiang@std.uestc.edu.cn;xcatougao@163.com;cuiguolong@uestc.edu.cn
About author:
Supported by:
Chuanfei ZANG, Yumiao WANG, Xiang WANG, Congan XU, Guolong CUI. Sea clutter suppression via cuttable encoder-decoder-augmentation network[J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1428-1440.
Table 3
Detailed structure of CEDAN"
Block | |||
Encoder ResUblock-7 | 1 | 32 | 64 |
Encoder ResUblock-6 | 64 | 32 | 128 |
Encoder ResUblock-5 | 128 | 64 | 256 |
Encoder ResUblock-4 | 256 | 128 | 512 |
Encoder ResUblock-4D | 512 | 256 | 512 |
Decoder ResUblock-4D | 256 | 512 | |
Decoder ResUblock-4 | 128 | 256 | |
Decoder ResUblock-5 | 512 | 64 | 128 |
Decoder ResUblock-6 | 256 | 32 | 64 |
Decoder ResUblock-7 | 128 | 16 | 64 |
Table 5
Description of measured data"
Data name | File name | Target | Sea condition |
data1 | Target1 | 3-4 | |
data2 | Target1 | 3-4 | |
data4 | Target1 | 3-4 | |
data5 | Target2 | 3-4 | |
data6 | Target2 | 3-4 |
Table 6
Description of datasets"
Dataset | Source data | Number of samples | Target |
Training | 20210106150614_01_staring.mat 20210106160919_01_staring.mat | 100 50 | Target1 Target2 |
Validation | 20210106150614_01_staring.mat 20210106160919_01_staring.mat | 50 50 | Target1 Target2 |
Test | 20210106150614_03_staring.mat 20210106160919_02_staring.mat | 9 25 | Target1 Target2 |
1 | CHEN X L, GUAN J, HUANG Y, et al Radon-linear canonical ambiguity function-based detection and estimation method for marine target with micromotion. IEEE Trans. on Geoscience and Remote Sensing, 2014, 53 (4): 2225- 2240. |
2 |
PAN M Y, SUN J, YANG Y H, et al M-FCN based sea-surface weak target detection. Journal of Systems Engineering and Electronics, 2021, 32 (5): 1111- 1118.
doi: 10.23919/JSEE.2021.000095 |
3 |
XU C, HE Z S, LIU H C, et al Bayesian track-before-detect algorithm for nonstationary sea clutter. Journal of Systems Engineering and Electronics, 2021, 32 (6): 1338- 1344.
doi: 10.23919/JSEE.2021.000113 |
4 | LI Y, ZHANG N, YANG Q Characteristic-knowledge-aided spectral detection of high frequency first-order sea echo. Journal of Systems Engineering and Electronics, 2009, 20 (4): 718- 725. |
5 | YANG W, ZHANG L, YANG L R, et al A general evaluation system for optimal selection performance of radar clutter model. Journal of Systems Engineering and Electronics, 2022, 34 (6): 1520- 1525. |
6 |
ZHU Y P, WEI Y S, TONG P First order sea clutter cross section for bistatic shipborne HFSWR. Journal of Systems Engineering and Electronics, 2017, 28 (4): 681- 689.
doi: 10.21629/JSEE.2017.04.07 |
7 |
SHEN X L, SONG Z Y, ZHU Y F, et al Fractal detector design and application in maritime target detection. Journal of Systems Engineering and Electronics, 2017, 28 (1): 27- 35.
doi: 10.21629/JSEE.2017.01.04 |
8 |
PAN M Y, SUN J, YANG Y H, et al Improved TQWT for marine moving target detection. Journal of Systems Engineering and Electronics, 2020, 31 (3): 470- 481.
doi: 10.23919/JSEE.2020.000029 |
9 | XU S W, MA Y T, BAI X H. Small target detection method in sea clutter based on interframe multi-feature iteration. Proc. of the IEEE 6th International Conference on Signal and Image Processing, 2021: 82–87. |
10 | ZHAO W J, JIN M L, CUI G L, et al Eigenvalues-based detector design for radar small floating target detection in sea clutter. IEEE Geoscience and Remote Sensing Letters, 2021, 19 (1): 1- 5. |
11 | XU S W, ZHENG J B, PU J, et al Sea-surface floating small target detection based on polarization features. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (10): 1505- 1509. |
12 | XUE J, XU S W, LIU J, et al Bayesian detection for radar targets in compound-gaussian sea clutter. IEEE Geoscience and Remote Sensing Letters, 2022, 19 (1): 4020805. |
13 | SUN Z, CHEN H X, LI X L, et al. Airborne radar coherent integration and sea-clutter suppression method for marine moving target via TSLRT-MFP-SVD. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2022: 3724–3727. |
14 | CHEN X L, HUANG Y, GUAN J, et al. Sea clutter suppression and moving target detection method based on clutter map cancellation in FRFT domain. Proc. of the IEEE CIE International Conference on Radar, 2011: 438–441. |
15 | XUE J, MA M S, LIU J, et al Wald-and rao-based detection for maritime radar targets in sea clutter with lognormal texture. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60 (1): 1- 9. |
16 | XU S W, WANG Z X, BAI X H, et al Optimum and near-optimum coherent CFAR detection of radar targets in compound-gaussian clutter with generalized inverse Gaussian texture. IEEE Trans. on Aerospace and Electronic Systems, 2021, 58 (3): 1692- 1706. |
17 |
POON M W, KHAN R H, LE-NGOC S A singular value decomposition (SVD) based method for suppressing ocean clutter in high frequency radar. IEEE Trans. on Signal Processing, 1993, 41 (3): 1421- 1425.
doi: 10.1109/78.205747 |
18 | WANG Z T, WANG Y L, DUAN K Q, et al Subspace-augmented clutter suppression technique for STAP radar. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (3): 462- 466. |
19 | ZHOU G J, JIN Y G, DONG H C, et al HF radar sea clutter rejection by nonlinear projections. Journal of Systems Engineering and Electronics, 2005, 16 (4): 733- 737. |
20 | CHEN X L, GUAN J, BAO Z H, et al Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform. IEEE Trans. on Geoscience and Remote Sensing, 2013, 52 (2): 1002- 1018. |
21 | WANG X L, ABOUTANIOS E, AMIN M G. Slow radar target detection in heterogeneous clutter using thinned space-time adaptive processing. IET Radar, Sonar & Navigation, 2016, 10(4): 726–734. |
22 | FAN Y F, LI C X, LI D T, et al. A novel sea clutter suppression method based on neural network. Proc. of the IEEE 4th International Conference on Electronic Information and Communication Technology, 2021: 437–440. |
23 | NI Z K, SHI C, PAN J, et al Declutter-gan: GPR b-scan data clutter removal using conditional generative adversarial nets. IEEE Geoscience and Remote Sensing Letters, 2022, 19 (1): 4023105. |
24 |
ZHAO Z X, CHEN X, LI B, et al Range-Doppler spectrograms-based clutter suppression of HF passive bistatic radar by D-CycleGAN. IEEE Sensors Journal, 2021, 21 (22): 26006- 26013.
doi: 10.1109/JSEN.2021.3119747 |
25 | MOU X Q, CHEN X L, GUAN J, et al Sea clutter suppression for radar PPI images based on SCS-GAN. IEEE Geoscience and Remote Sensing Letters, 2020, 18 (11): 1886- 1890. |
26 | PEI J F, YANG Y, WU Z B, et al A sea clutter suppression method based on machine learning approach for marine surveillance radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15 (1): 3120- 3130. |
27 | QIAN L. Radar clutter suppression solution based on ICA. Proc. of the Fourth International Conference on Intelligent Systems Design and Engineering Applications, 2013: 429–432. |
28 | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks. Proc. of the International Conference on Machine Learning, 2017: 214–223. |
29 | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein gans. Proc. of the Advances in Neural Information Processing Systems, 2017: 30−45. |
30 | WANG Y M, ZHAO W J, WANG X, et al Nonhomogeneous sea clutter suppression using complex-valued U-Net model. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1- 5. |
31 | RONNEBERGER O, FISHER P, BROX T. U-net: convolutional networks for biomedical image segmentation. Proc. of the Medical Image Computing and Computer-Assisted Intervention, 2015: 234–241. |
32 |
STROGATZ S H Exploring complex networks. Nature, 2001, 410 (6825): 268- 276.
doi: 10.1038/35065725 |
33 | CHEN X L, YU X H, HUANG Y, et al Adaptive clutter suppression and detection algorithm for radar maneuvering target with high-order motions via sparse fractional ambiguity function. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13 (1): 1515- 1526. |
34 | YU J G, XIA G S, DENG J J, et al Small object detection in forward-looking infrared images with sea clutter using context-driven Bayesian saliency model. Infrared Physics & Technology, 2015, 73 (1): 175- 183. |
35 | ZHANG L, DAI J, LU H C, et al. A bi-directional message passing model for salient object detection. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1741–1750. |
36 | LU S J, LIM J H. Saliency modeling from image histograms. Proc. of the European Conference on Computer Vision, 2012: 321–332. |
37 | LONG J T, SHELLHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431–3440. |
38 | LIU N B, DING H, HUNAG Y, et al Annual progress of the sea-detecting X-band radar and data acquisition program. Journal of Radars, 2021, 10 (1): 173- 182. |
39 | LIU N B, DONG Y L, WANG G Q, et al Sea-detecting X-band radar and data acquisition program. Journal of Radars, 2019, 8 (5): 656- 667. |
40 | GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks. Proc. of the 13th International Conference on Artificial Intelligence and Statistics, 2010: 249–256. |
41 | DIEDERIK P K. Adam: a method for stochastic optimization. Proc. of the International Conference on Learning Representations, 2015: 1–13. |
[1] | Yuxiang XIE, Quanzhi GONG, Xidao LUAN, Jie YAN, Jiahui ZHANG. A survey of fine-grained visual categorization based on deep learning [J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1337-1356. |
[2] | Hongcheng YIN, Hua YAN. Parametric modeling and applications of target scattering centers: a review [J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1411-1427. |
[3] | Hongyong WANG, Ying SUO, Weibo DENG, Xiaochuan WU, Yang BAI, Xin ZHANG. A frequency domain estimation and compensation method for system synchronization parameters of distributed-HFSWR [J]. Journal of Systems Engineering and Electronics, 2024, 35(5): 1084-1097. |
[4] | Yan LIU, Jianxin YI, Xianrong WAN, Yunhua RAO, Caiyong HAO. Channel estimation in integrated radar and communication systems with power amplifier distortion [J]. Journal of Systems Engineering and Electronics, 2024, 35(5): 1098-1108. |
[5] | Pengfei WANG, Jinfeng HU, Wen HU, Weiguang WANG, Hao DONG. Anti-swarm UAV radar system based on detection data fusion [J]. Journal of Systems Engineering and Electronics, 2024, 35(5): 1167-1176. |
[6] | Yuqing ZHENG, Xiaofeng AI, Yong YANG, Feng ZHAO, Shunping XIAO. Detection method of forward-scatter signal based on Rényi entropy [J]. Journal of Systems Engineering and Electronics, 2024, 35(4): 865-873. |
[7] | Rui CAO, Yong WANG. Novel method for extraction of ship target with overlaps in SAR image via EM algorithm [J]. Journal of Systems Engineering and Electronics, 2024, 35(4): 874-887. |
[8] | Menghan CHEN, Hongyuan GAO, Yanan DU, Jianhua CHENG, Yuze ZHANG. Direction finding of bistatic MIMO radar in strong impulse noise [J]. Journal of Systems Engineering and Electronics, 2024, 35(4): 888-898. |
[9] | Ai GAO, Shengnan XU, Zichen ZHAO, Haibin SHANG, Rui XU. Fault diagnosis method of link control system for gravitational wave detection [J]. Journal of Systems Engineering and Electronics, 2024, 35(4): 922-931. |
[10] | Xinwei OU, Zhangxin CHEN, Ce ZHU, Yipeng LIU. Low rank optimization for efficient deep learning: making a balance between compact architecture and fast training [J]. Journal of Systems Engineering and Electronics, 2024, 35(3): 509-531. |
[11] | Rong FAN, Chengke SI, Yi HAN, Qun WAN. RFFsNet-SEI: a multidimensional balanced-RFFs deep neural network framework for specific emitter identification [J]. Journal of Systems Engineering and Electronics, 2024, 35(3): 558-574. |
[12] | Yanan WANG, Chaowei ZHOU, Aifang LIU, Qin MAO. SAR regional all-azimuth observation orbit design for target 3D reconstruction [J]. Journal of Systems Engineering and Electronics, 2024, 35(3): 609-618. |
[13] | Dada ZHAO, Kai DING, Xiaogang QI, Yu CHEN, Hailin FENG. Sound event localization and detection based on deep learning [J]. Journal of Systems Engineering and Electronics, 2024, 35(2): 294-301. |
[14] | Shaopeng WEI, Lei ZHANG, Jingyue LU, Hongwei LIU. Modulated-ISRJ rejection using online dictionary learning for synthetic aperture radar imagery [J]. Journal of Systems Engineering and Electronics, 2024, 35(2): 316-329. |
[15] | Lin GAN, Zehao WU, Xuesong WANG, Jianbing LI. An angular blinking jamming method based on electronically controlled corner reflectors [J]. Journal of Systems Engineering and Electronics, 2024, 35(2): 330-338. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||