Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (2): 510-522.doi: 10.23919/JSEE.2025.000023
• CONTROL THEORY AND APPLICATION • Previous Articles
Yin CAO1,*(), Lijing LI1(
), Sheng LIANG2(
)
Received:
2024-02-26
Accepted:
2025-02-21
Online:
2025-04-18
Published:
2025-05-20
Contact:
Yin CAO
E-mail:yinc0901@buaa.edu.cn;lilijing@buaa.edu.cn;shliang@bjtu.edu.cn
About author:
Supported by:
Yin CAO, Lijing LI, Sheng LIANG. Temperature error compensation method for fiber optic gyroscope based on a composite model of k-means, support vector regression and particle swarm optimization[J]. Journal of Systems Engineering and Electronics, 2025, 36(2): 510-522.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Experiment temperature setting scheme of programmable thermostat"
Stage number | Experiment 1 | Experiment 2 | Experiment 3 | |||||
Variation rate/(℃/h) | Time/ h | Variation rate/(℃/h) | Time/ h | Variation rate/(℃/h) | Time/ h | |||
0 | Room T to −40 ℃ | 1 | Room T to −40 ℃ | 1 | Room T to −40 ℃ | 1 | ||
1 | +50 | 1 | +50 | 1 | 50 | 1 | ||
2 | +25 | 2 | −35 | 1 | 35 | 1 | ||
3 | −25 | 2 | +40 | 1 | 15 | 1 | ||
4 | −50 | 1 | −15 | 1 | 50 | 1 | ||
5 | Powered off and return to room T | − | +35 | 1 | 35 | 1 | ||
6 | − | −10 | 1 | 15 | 1 | |||
7 | − | − | +35 | 1 | Powered off and return to room T | − | ||
8 | − | − | Powered off and return to room T | − | − | − |
Table 7
Allan variance analysis of FOG noise sources"
Noise source | Before compensation | OS+SVR | IS+ k-means-SVR-PSO | |||
After compensation | Noise suppression/% | After compensation | Noise suppression/% | |||
Q/(°) | 24.53 | 35.13 | ||||
NA/((°)/h1/2) | 9.86 | 17.16 | ||||
B/((°)/h) | 24.68 | 39.64 | ||||
KR/((°)/h3/2) | 28.27 | 45.33 | ||||
R/((°)/h2) | 2.29 | 14.83 |
1 | PATUREL Y, HONTHAAS J, LEFÈVRE H. One nautical mile per month FOG based strapdown inertial navigation system: a dream already within reach? Gyroscopy and Navigation, 2014, 5(1): 1–8. |
2 |
LIU H Q, LUO W, LU J Z High precision fiber-optic gyroscope resolution test method based on low precision turntable. IEEE Sensors Journal, 2020, 20 (15): 8656- 8662.
doi: 10.1109/JSEN.2020.2982982 |
3 | PAVLATH G A. Fiber optic gyros: the vision realized. Proceedings of the SPIE, 2006. DOI: 10.1117/12.683457. |
4 |
LOFTS C M, RUFFIN P B, PARKER M D Investigation of the effects of temporal thermal gradients in fiber optic gyroscope sensing coils. Optical Engineering, 1995, 34 (10): 2856- 2863.
doi: 10.1117/12.210771 |
5 |
FENG T X, ZHANG S Y, WU T, et al Entangled photon-pair source using a wedge-shaped nonlinear crystal. Optical Materials, 2023, 145, 114441.
doi: 10.1016/j.optmat.2023.114441 |
6 | CHANG K F, LI Y, WANG W. Numerical study of two-stage temperature control strategy for high temperature stability of satellite-borne fiber optic gyroscope. Journal of Electronic Packaging, 2023, 145(3): 031011. |
7 |
BLIN S, KIM H K, DIGONNET M J F Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber. Journal of Lightwave Technology, 2007, 25 (3): 861- 865.
doi: 10.1109/JLT.2006.889658 |
8 |
BLIN S, DIGONNET M J F, KINO G S Noise analysis of an air-core fiber optic gyroscope. IEEE Photonics Technology Letters, 2007, 19 (19): 1520- 1522.
doi: 10.1109/LPT.2007.903878 |
9 | HUANG C F, LI A, QIN F J, et al. Temperature error compensation method for fiber optic gyroscope considering heat transfer delay. Proc. of the 3rd International Conference on Electronic Information Technology and Computer Engineering, 2019: 1061−1067. |
10 |
WANG X W, CUI Y, CAO H L Temperature drift compensation of fiber optic gyroscopes based on an improved method. Micromachines, 2023, 14 (9): 1712- 1730.
doi: 10.3390/mi14091712 |
11 |
TIAN L L, NIU Y X, HUANG C W, et al A novel temperature-compensation method based oncorrelation analysis for multi-FOG INS. Chinese Journal of Aeronautics, 2023, 36 (6): 279- 287.
doi: 10.1016/j.cja.2023.02.009 |
12 | GONTAR D A, DRANITSYNA E V. Improving the efficiency of fiber-optic gyrotemperature sensitivity compensation. Proc. of the 29th Saint Petersburg International Conference on Integrated Navigation Systems, 2022. DOI: 10.23919/ICINS51784.2022.9815434. |
13 | CAI W, WANG J Y, HAO W H, et al. RBF neural network-based temperature error compensation for fiber optic gyroscopes. Proc. of the International Conference in Communications, Signal Processing, and Systems, 2020: 1627−1635. |
14 |
XU J T, TIAN A L, LIU H, et al Modeling and prediction of thermal deformation errors in fiber optic gyroscopes based on the TD-model. Sensors, 2023, 23 (23): 9450- 9464.
doi: 10.3390/s23239450 |
15 | WANG W, CHEN X Y. Temperature drift modeling and compensation of fiber optical gyroscope based on improved support vector machine and particle swarm optimization algorithms. Applied Optics, 2016, 55(23): 6243−6250. |
16 |
LIU J G, CHEN X Y Temperature drift compensation of a FOG based on an HKSVM optimized by an improved hybrid BAS-GSA algorithm. Applied Optics, 2021, 60 (34): 10539- 10547.
doi: 10.1364/AO.440887 |
17 | MAO N, XU J N, LI J S, et al. A LSTM-RNN-based fiber optic gyroscope drift compensation. Mathematical Problems in Engineering, 2021, 32: 1636001. |
18 | ZHAO X X, CHEN G, LIU H, et al A multivariate temperature drift modeling and compensation method for large-diameter high-precision fiber optic gyroscopes. IEEE Trans. on Instrumentation and Measurement, 2022, 71, 8502912. |
19 |
WANG G C, WANG Q Y, ZHAO B, et al Compensation method for temperature error of fiber optical gyroscope based on relevance vector machine. Applied Optics, 2016, 55 (5): 1061- 1066.
doi: 10.1364/AO.55.001061 |
20 | ZHENG B D, LIU W, LV M, et al. Segmental compensation of FOG temperature error based on ELM prediction model. Proc. of the 33rd Chinese Control and Decision Conference, 2021: 6286−6290. |
21 | FU J, JIANG S, QIN F J, et al. Novel piecewise compensation method for FOG temperature error. Journal of Chinese Inertial Technology, 2016, 24(2): 242−244. |
22 |
CAO Y, XU W Y, LIN B, et al A method for temperature error compensation in fiber-optic gyroscope based on machine learning. Optik, 2022, 256, 168765.
doi: 10.1016/j.ijleo.2022.168765 |
23 |
CAO Y, XU W Y, LIN B, et al Long short-term memory network of machine learning for compensating temperature error of a fiber optic gyroscope independent of the temperature sensor. Applied Optics, 2022, 61 (28): 8212- 8222.
doi: 10.1364/AO.471762 |
24 |
POST E J Sagnac effect. Reviews of Modern Physics, 1967, 39 (2): 475- 494.
doi: 10.1103/RevModPhys.39.475 |
25 |
SHUPE D M Thermally induced nonreciprocity in the fiber optic interferometers. Applied Optics, 1980, 19 (5): 654- 655.
doi: 10.1364/AO.19.000654 |
26 | HARTIGAN J A, WONG M A Algorithm AS 136: a k-means clustering algorithm. Journal of the royal statistical society, Series C (applied statistics), 1979, 28 (1): 100- 108. |
27 |
SINAGA K P, YANG M S Unsupervised K-means clustering algorithm. IEEE Access, 2020, 8, 80716- 80727.
doi: 10.1109/ACCESS.2020.2988796 |
28 |
ZHANG L Research on K-means clustering algorithm based on MapReduce distributed programming framework. Procedia Computer Science, 2023, 228, 262- 270.
doi: 10.1016/j.procs.2023.11.030 |
29 |
KE T, LIAO Y Y, WU M Y, et al Maximal margin hyper-sphere SVM for binary pattern classification. Engineering Applications of Artificial Intelligence, 2023, 117, 105615.
doi: 10.1016/j.engappai.2022.105615 |
30 |
TRAN T N A new grid search algorithm based on median values for SVR model in case of load forecasting. Periodica Polytechnica Electrical Engineering and Computer Science, 2023, 67 (1): 51- 60.
doi: 10.3311/PPee.20887 |
31 | KENNEDY J, EBERHART R. Particle swarm optimization. Proc. of the IEEE International Conference on Neural Networks, 1995: 1942−1948. |
32 | PARSOPOULOS K E, VRAHATIS M N Unified particle swarm optimization for solving constrained engineering optimization problems. Lecture Notes in Computer Science, 2005, 3612, 582. |
33 | IEEE B E. IEEE draft standard specification format guide and test procedure for single-axis interferometric fiber optic gyros. IEEE P952/D07, New York, USA: 1998. |
34 |
WANG L, ZHANG C X, LIN T, et al Characterization of a fiber optic gyroscope in a measurement while drilling system with the dynamic Allan variance. Measurement, 2015, 75, 263- 272.
doi: 10.1016/j.measurement.2015.05.001 |
35 |
SONG R, CHEN X Y, HUANG H Q Nonstationary dynamic stochastic error analysis of fiber optic gyroscope based on optimized Allan variance. Sensors and Actuators A: Physical, 2018, 276, 26- 33.
doi: 10.1016/j.sna.2018.04.002 |
[1] | Yu JIN, Xucheng WANG, Yunlang XU, Jianbo YU, Qiaodan LU, Xiaofeng YANG. Hysteresis modeling and compensation of piezo actuator with sparse regression [J]. Journal of Systems Engineering and Electronics, 2025, 36(1): 48-61. |
[2] | Heyu CHEN, Xuexin QIN, Huan XIE, Linghai KONG, Yue ZHENG. Vibration-induced bias error reduction using loop gain compensation for high-precision fiber optic gyroscopes [J]. Journal of Systems Engineering and Electronics, 2025, 36(1): 224-232. |
[3] | Jian WANG, Jingyi ZHU, Hua SHI, Huchen LIU. New density clustering-based approach for failure mode and effect analysis considering opinion evolution and bounded confidence [J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1491-1506. |
[4] | Yu LU, Jiongqi WANG, Zhangming HE, Haiyin ZHOU, Yao XING, Xuanying ZHOU. System error iterative identification for underwater positioning based on spectral clustering [J]. Journal of Systems Engineering and Electronics, 2024, 35(4): 1028-1041. |
[5] | Youliang LIN, Wu LI, Gang LIU, Dong HUANG. Method for triangular fuzzy multiple attribute decision making based on two-dimensional density operator method [J]. Journal of Systems Engineering and Electronics, 2024, 35(1): 178-185. |
[6] | Sheng TONG, Hong QU, Junjie XUE. K-DSA for the multiple traveling salesman problem [J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 1614-1625. |
[7] | Chi HAN, Wei XIONG, Minghui XIONG, Zhen LIU. Support vector regression-based operational effectiveness evaluation approach to reconnaissance satellite system [J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 1626-1644. |
[8] | Lei XIE, Shangqin TANG, Zhenglei WEI, Yongbo XUAN, Xiaofei WANG. UCAV situation assessment method based on C-LSHADE-Means and SAE-LVQ [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1235-1251. |
[9] | Fuyunxiang YANG, Leping YANG, Yanwei ZHU. An AutoML based trajectory optimization method for long-distance spacecraft pursuit-evasion game [J]. Journal of Systems Engineering and Electronics, 2023, 34(3): 754-765. |
[10] | Fengfei WANG, Shengjin TANG, Liang LI, Xiaoyan SUN, Chuanqiang YU, Xiaosheng SI. Remaining useful life prediction of aero-engines based on random-coefficient regression model considering random failure threshold [J]. Journal of Systems Engineering and Electronics, 2023, 34(2): 530-542. |
[11] | Fengfei WANG, Shengjin TANG, Xiaoyan SUN, Liang LI, Chuanqiang YU, Xiaosheng SI. Remaining useful life prediction based on nonlinear random coefficient regression model with fusing failure time data [J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 247-258. |
[12] | Xu LYU, Baiqing HU, Yongbin DAI, Mingfang SUN, Yi LIU, Duanyang GAO. Gaussian process regression-based quaternion unscented Kalman robust filter for integrated SINS/GNSS [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1079-1088. |
[13] | Yuan ZENG, Wenbin LU, Bo YU, Shifei TAO, Haosu ZHOU, Yu CHEN. Improved IMM algorithm based on support vector regression for UAV tracking [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 867-876. |
[14] | Hao FENG, Jianzhong WU, Lu ZHANG, Mingsheng LIAO. Unsupervised change detection of man-made objects using coherent and incoherent features of multi-temporal SAR images [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 896-906. |
[15] | Jinfeng LYU, Fucai LIU, Yaxue REN. Fuzzy identification of nonlinear dynamic system based on selection of important input variables [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 737-747. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||