This paper addresses a dynamic vehicle routing problem with stochastic requests in a dual-channel distribution center that utilizes shared vehicle resources to serve two types of customers: offline corporate clients (CCs) with fixed and stochastic batch demands, and online individual customers (ICs) with single-unit demands. To manage stochastic batch demands from CCs, this paper proposes three recourse policies under a differentiated resource-sharing scheme: the waiting-tour-based (WTB) policy, the advance-tour-based (ATB) policy, and the advance-customer-based (ACB) policy. These policies differ in their response priorities to random requests and the scope of route reoptimization. The problem is formulated as a two-stage stochastic recourse programming model, where the first stage establishes routes for fixed demands. In the second stage, we construct three stochastic recourse programming models corresponding to the proposed recourse policies. To solve these models, this paper develop rolling horizon algorithms integrated with mathematical programming models or metaheuristic algorithms. Extensive numerical experiments validate the effectiveness of the proposed algorithms and policies. The results indicate that both the ATB and ACB policies lead to cost savings compared to the WTB policy, especially when stochastic demands are urgent and delivery resources are quite limited. Specifically, when the number of ICs is small, the expected total cost savings can exceed 12%, and in some scenarios, savings of over 20% can be achieved. When the number of ICs is large, some scenarios can achieve cost savings exceeding 7%. Furthermore, the ACB policy yields lower costs, fewer worsened ICs, fewer trips, and less vehicle time than the ATB policy.
In an aircraft final assembly line (AFAL), the rational scheduling of assembly workers to complete tasks in an orderly manner is crucial for enhancing production efficiency. This paper addresses the multi-skilled worker scheduling problem in the AFAL, where the processing time of each task varies due to the assigned workers’ skill levels, referred to as variable duration. The objective is to minimize the makespan, i.e., the total time required for all workers to complete all tasks. A mixed integer linear programming model is formulated under complex constraints including assembly precedence relations, skill requirements, worker skill capabilities, and workspace capacities. To solve the model effectively, a multi-pass priority rule-based heuristic (MPRH) algorithm is proposed. This algorithm integrates 14 activity priority rules and nine worker priority rules with worker weights. Extensive experiments iteratively the best-performing priority rules, and the most effective rule subsets are integrated through a lightweight multi-pass mechanism to enhance its efficiency. The computational results demonstrate that the MPRH can find high-quality solutions effectively within very short central processing unit central processing unit (CPU) time compared to GUROBI. A case study based on real data obtained from an AFAL confirms the necessity and the feasibility of the approach in practical applications. Sensitivity analyses provide valuable insights to real production scenarios.
Aiming at the characteristics of autonomy, confrontation, and uncertainty in unmanned aerial vehicle (UAV) swarm operations, case-based reasoning (CBR) technology with advantages such as weak dependence on domain knowledge and efficient problem-solving is introduced, and a recommendation method for UAV swarm operation strategies based on CBR is proposed. Firstly, we design a universal framework for UAV swarm operation strategies from three dimensions: operation effectiveness, time, and cost. Secondly, based on the representation of operation cases, certain, fuzzy, interval, and classification attribute similarity calculation methods, as well as entropy-based attribute weight allocation methods, are suggested to support the calculation of global similarity of cases. This method is utilized to match the source case with the most similarity from the historical case library, to obtain the optimal recommendation strategy for the target case. Finally, in the form of red blue confrontation, a UAV swarm operation strategy recommendation case is constructed based on actual battle cases, and a system simulation analysis is conducted. The results show that the strategy given in the example performs the best in three evaluation indicators, including cost-effectiveness, and overall outperforms other operation strategies. Therefore, the proposed method has advantages such as high real-time performance and interpretability, and can address the issue of recommending UAV swarm operation strategies in complex battlefield environments across both online and offline modes. At the same time, this study could also provide new ideas for the selection of UAV swarm operation strategies.
The precision and quality of machining in computer numerical control (CNC) machines are significantly impacted by the state of the tool. Therefore, it is essential and crucial to monitor the tool’s condition in real time during operation. To improve the monitoring accuracy of tool wear values, a tool wear monitoring approach is developed in this work, which is based on an improved integrated model of densely connected convolutional network (DenseNet) and gated recurrent unit (GRU), which incorporates data preprocessing via wavelet packet transform (WPT). Firstly, wavelet packet decomposition (WPD) is used to extract time-frequency domain features from the original time-series monitoring signals of the tool. Secondly, the multidimensional deep features are extracted from DenseNet containing asymmetric convolution kernels, and feature fusion is performed. A dilation scheme is employed to acquire more historical data by utilizing dilated convolutional kernels with different dilation rates. Finally, the GRU is utilized to extract temporal features from the extracted deep-level signal features, and the feature mapping of these temporal features is then carried out by a fully connected neural network, which ultimately achieves the monitoring of tool wear values. Comprehensive experiments conducted on reference datasets show that the proposed model performs better in terms of accuracy and generalization than other cutting-edge tool wear monitoring algorithms.
In this paper, a grey Kalman filter model is proposed for lithium battery charge state estimation. Firstly, this paper establishes a recursive relation equation between the front and back terms through the grey model (GM). Secondly, the state space expression is constructed based on the recursive relationship equation. Next, the Kalman filter algorithm is integrated to form a grey Kalman filter model. Finally, the charge state is estimated based on public lithium battery data. In this paper, the state of charge is estimated from three different aspects, including different driving cycles, randomly mixed driving cycles, and the estimation of the state of charge by different temperatures under the same driving cycle conditions. On this basis, the model is applied to a life scenario using the charge state of 20 electric vehicles. The results show that the proposed model has good accuracy.
Agile earth observation satellites (AEOSs) represent a new generation of satellites with three degrees of freedom (pitch, roll, and yaw); they possess a long visible time window (VTW) for ground targets and support imaging at any moment within the VTW. However, different observation times demonstrate different cloud cover distributions, which exhibit different effects on the AEOS observation. Previous studies ignored pitch angles, discretized VTWs, or fixed cloud cover for every VTW, which led to the loss of intermediate observation states, thus these studies are not suitable for AEOS scheduling considering cloud cover distribution. In this study, a relationship formula between the cloud cover and observation time is proposed to calculate the cloud cover for every observation time, and a relationship formula between the observation time and pitch angle is designed to calculate the pitch angle for every observation time in the VTW. A refined model including the pitch angle, roll angle, and cloud cover distribution is established, which can make the scheme closer to the actual application of AEOSs. A hybrid genetic simulated annealing (HGSA) algorithm for AEOS scheduling is proposed, which integrates the advantages of genetic and simulated annealing algorithms and can effectively avoid falling into a local optimal solution. The experiments are conducted to compare the proposed algorithm with the traditional algorithms, the results verify that the proposed model and algorithm are efficient and effective for AEOS scheduling considering cloud cover distribution.
To overcome the limitations of conventional approaches that adopt monolithic architectures and overlook critical dynamic interactions in evaluating combat effectiveness and subsystem contributions within amphibious operations, this paper proposes an integrated framework combining complex system network modeling with dynamic adversarial simulation for evaluating mission-critical system-of-systems (SoS). Specifically, the contribution rate of unmanned aerial vehicles (UAVs) to the amphibious joint landing SoS (AJLSoS) is quantified. Firstly, a standardized network topology model is developed using operation loop theory, systematically characterizing node functionalities and their interdependencies. Secondly, the ideal Lanchester equation is augmented according to the model’s static operational capability, and an amphibious operational simulation model is constructed based on the modified equation, enabling dynamic simulation of force attrition and engagement duration as key performance indicators of AJLSoS. To validate the theoretical framework, a battalion-level amphibious campaign scenario is developed to compute effectiveness metrics across multiple control scenarios and the contribution rate of UAVs to AJLSoS is analyzed. This study not only provides actionable insights for operational mission planning of UAVs in the context of amphibious operations but also demonstrates high adaptability to diverse operational contexts.
To extract and display the significant information of combat systems, this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named “functional cartography of heterogeneous combat networks based on the operational chain” (FCBOC). In this framework, a functional module detection algorithm named operational chain-based label propagation algorithm (OCLPA), which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity, is proposed to identify the functional modules of the network. Then, the nodes and their modules are classified into different roles according to their properties. A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics. The results provide useful information to help commanders make precise and accurate decisions regarding the protection, disintegration or optimization of combat networks. Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.
The exploration of unmanned aerial vehicle (UAV) swarm systems represents a focal point in the research of multi-agent systems, with the investigation of their fission-fusion behavior holding significant theoretical and practical value. This review systematically examines the methods for fission-fusion of UAV swarms from the perspective of multi-agent systems, encompassing the composition of UAV swarm systems and fission-fusion conditions, information interaction mechanisms, and existing fission-fusion approaches. Firstly, considering the constituent units of UAV swarms and the conditions influencing fission-fusion, this paper categorizes and introduces the UAV swarm systems. It further examines the effects and limitations of fission-fusion methods across various categories and conditions. Secondly, a comprehensive analysis of the prevalent information interaction mechanisms within UAV swarms is conducted from the perspective of information interaction structures. The advantages and limitations of various mechanisms in the context of fission-fusion behaviors are summarized and synthesized. Thirdly, this paper consolidates the existing implementation research findings related to the fission-fusion behavior of UAV swarms, identifies unresolved issues in fission-fusion research, and discusses potential solutions.Finally, the paper concludes with a comprehensive summary and systematically outlines future research opportunities.
The rapid development of military technology has prompted different types of equipment to break the limits of operational domains and emerged through complex interactions to form a vast combat system of systems (CSoS), which can be abstracted as a heterogeneous combat network (HCN). It is of great military significance to study the disintegration strategy of combat networks to achieve the breakdown of the enemy’s CSoS. To this end, this paper proposes an integrated framework called HCN disintegration based on double deep $Q$-learning (HCN-DDQL). Firstly, the enemy’s CSoS is abstracted as an HCN, and an evaluation index based on the capability and attack costs of nodes is proposed. Meanwhile, a mathematical optimization model for HCN disintegration is established. Secondly, the learning environment and double deep $Q$-network model of HCN-DDQL are established to train the HCN’s disintegration strategy. Then, based on the learned HCN-DDQL model, an algorithm for calculating the HCN’s optimal disintegration strategy under different states is proposed. Finally, a case study is used to demonstrate the reliability and effectiveness of HCN-DDQL, and the results demonstrate that HCN-DDQL can disintegrate HCNs more effectively than baseline methods.
To address the issue of neglecting scenarios involving joint operations and collaborative drone swarm operations in air combat target intent recognition. This paper proposes a transfer learning-based intention prediction model for drone formation targets in air combat. This model recognizes the intentions of multiple aerial targets by extracting spatial features among the targets at each moment. Simulation results demonstrate that, compared to classical intention recognition models, the proposed model in this paper achieves higher accuracy in identifying the intentions of drone swarm targets in air combat scenarios.
Performance-based warranties (PBWs) are widely used in industry and manufacturing. Given that PBW can impose financial burdens on manufacturers, rational maintenance decisions are essential for expanding profit margins. This paper proposes an optimization model for PBW decisions for systems affected by Gamma degradation processes, incorporating periodic inspection. A system performance degradation model is established. Preventive maintenance probability and corrective renewal probability models are developed to calculate expected warranty costs and system availability. A benefits function, which includes incentives, is constructed to optimize the initial and subsequent inspection intervals and preventive maintenance thresholds, thereby maximizing warranty profit. An improved sparrow search algorithm is developed to optimize the model, with a case study on large steam turbine rotor shafts. The results suggest the optimal PBW strategy involves an initial inspection interval of approximately 20 months, with subsequent intervals of about four months, and a preventive maintenance threshold of approximately 37.39 mm wear. When compared to common cost-minimization-based condition maintenance strategies and PBW strategies that do not differentiate between initial and subsequent inspection intervals, the proposed PBW strategy increases the manufacturer’s profit by 1% and 18%, respectively. Sensitivity analyses provide managerial recommendations for PBW implementation. The PBW strategy proposed in this study significantly increases manufacturers’ profits by optimizing inspection intervals and preventive maintenance thresholds, and manufacturers should focus on technological improvement in preventive maintenance and cost control to further enhance earnings.
The emergence of laser technology has led to the gradual integration of laser weapon system (LaWS) into military scene, particularly in the field of anti-unmanned aerial vehicle (UAV), showcasing significant potential. However, A current limitation lies in the absence of a comprehensive quantitative approach to assess the capabilities of LaWS. To address this issue, a damage effectiveness characterization model for LaWS is established, taking into account the properties of laser transmission through the atmosphere and the thermal damage effects. By employing this model, key parameters pertaining to the effectiveness of laser damage are determined. The impact of various spatial positions and atmospheric conditions on the damage effectiveness of LaWS have been examined, employing simulation experiments with diverse parameters. The conclusions indicate that the damage effectiveness of LaWS is contingent upon the spatial position of the target, resulting in a diminished effectiveness to damage on distant, low-altitude targets. Additionally, the damage effectiveness of LaWS is heavily reliant on the atmospheric condition, particularly in complex settings such as midday and low visibility conditions, where the damage effectiveness is substantially reduced. This paper provides an accurate and effective calculation method for the rapid decision-making of the operators.
In view of the deficiencies in aspects such as failure rate requirements and analysis assumptions of advisory circular, this paper investigates the sources of high safety requirements, and the top-down design method for the flight control system life cycle. Correspondingly, measures are proposed, including enhancing the safety target value to 10?10 per flight hour and implementing development assurance. In view of the shortcomings of mainstream aircraft flight control systems, such as weak backup capability and complex fault reconfiguration logic, improvements have been made to the system’s operating modes, control channel allocation, and common mode failure mitigation schemes based on the existing flight control architecture. The flight control design trends and philosophies have been analyzed. A flight control system architecture scheme is proposed, which includes three operating modes and multi-level voters/monitors, three main control channels, and a backup system independent of the main control system, which has been confirmed through functional modeling simulations. The proposed method plays an important role in the architecture design of safety-critical flight control system.
The operational readiness test (ORT), like weapon testing before firing, is becoming more and more important for systems used in the field. However, the test requirement of the ORT is distinctive. Specifically, the rule of selecting test items should be changed in different test turns, and whether there is a fault is more important than where the fault is. The popular dependency matrix (D-matrix) processing algorithms becomes low efficient because they cannot change their optimizing direction and spend unnecessary time on fault localization and isolation. To this end, this paper proposes a D-matrix processing algorithm named piecewise heuristic algorithm for D-matrix (PHAD). Its key idea is to use a piecewise function comprised of multiple different functions instead of the commonly used fixed function and switch subfunctions according to the test stage. In this manner, PHAD has the capability of changing optimizing direction, precisely matching the variant test requirements, and generating an efficient test sequence. The experiments on the random matrixes of different sizes and densities prove that the proposed algorithm performs better than the classical algorithms in terms of expected test cost (ETC) and other metrics. More generally, the piecewise heuristic function shows a new way to design D-matrix processing algorithm and a more flexible heuristic function to meet more complicated test requirements.
High complexity and uncertainty of air combat pose significant challenges to target intention prediction. Current interpolation methods for data pre-processing and wrangling have limitations in capturing interrelationships among intricate variable patterns. Accordingly, this study proposes a Mogrifier gate recurrent unit-D (Mog-GRU-D) model to address the combat target intention prediction issue under the incomplete information condition. The proposed model directly processes missing data while reducing the independence between inputs and output states. A total of 1200 samples from twelve continuous moments are captured through the combat simulation system, each of which consists of seven dimensional features. To benchmark the experiment, a missing valued dataset has been generated by randomly removing 20% of the original data. Extensive experiments demonstrate that the proposed model obtains the state-of-the-art performance with an accuracy of 73.25% when dealing with incomplete information. This study provides possible interpretations for the principle of target interactive mechanism, highlighting the model’s effectiveness in potential air warfare implementation.
The dwell scheduling problem for a multifunctional radar system is led to the formation of corresponding optimization problem. In order to solve the resulting optimization problem, the dwell scheduling process in a scheduling interval (SI) is formulated as a Markov decision process (MDP), where the state, action, and reward are specified for this dwell scheduling problem. Specially, the action is defined as scheduling the task on the left side, right side or in the middle of the radar idle timeline, which reduces the action space effectively and accelerates the convergence of the training. Through the above process, a model-free reinforcement learning framework is established. Then, an adaptive dwell scheduling method based on Q-learning is proposed, where the converged Q value table after training is utilized to instruct the scheduling process. Simulation results demonstrate that compared with existing dwell scheduling algorithms, the proposed one can achieve better scheduling performance considering the urgency criterion, the importance criterion and the desired execution time criterion comprehensively. The average running time shows the proposed algorithm has real-time performance.
Project construction and development are an important part of future army designs. In today’s world, intelligent warfare and joint operations have become the dominant developments in warfare, so the construction and development of the army need top-down, top-level design, and comprehensive planning. The traditional project development model is no longer sufficient to meet the army’s complex capability requirements. Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effectiveness. At the same time, when a program consists of large-scale project data, the effectiveness of the traditional, precise mathematical planning method is greatly reduced because it is time-consuming, costly, and impractical. To solve above problems, this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algorithm and verifies the effectiveness and feasibility of the model and algorithm through an example. The results show that the hybrid algorithm proposed in this paper is better than the existing meta-heuristic algorithm.
To address the confrontation decision-making issues in multi-round air combat, a dynamic game decision method is proposed based on decision tree for the confrontation of unmanned aerial vehicle (UAV) air combat. Based on game theory and the confrontation characteristics of air combat, a dynamic game process is constructed including the strategy sets, the situation information, and the maneuver decisions for both sides of air combat. By analyzing the UAV’s flight dynamics and the both sides’ information, a payment matrix is established through the situation advantage function, performance advantage function, and profit function. Furthermore, the dynamic game decision problem is solved based on the linear induction method to obtain the Nash equilibrium solution, where the decision tree method is introduced to obtain the optimal maneuver decision, thereby improving the situation advantage in the next round of confrontation. According to the analysis, the simulation results for the confrontation scenarios of multi-round air combat are presented to verify the effectiveness and advantages of the proposed method.
This paper proposes a reliability evaluation model for a multi-dimensional network system, which has potential to be applied to the internet of things or other practical networks. A multi-dimensional network system with one source element and multiple sink elements is considered first. Each element can connect with other elements within a stochastic connection ranges. The system is regarded as successful as long as the source element remains connected with all sink elements. An importance measure is proposed to evaluate the performance of non-source elements. Furthermore, to calculate the system reliability and the element importance measure, a multi-valued decision diagram based approach is structured and its complexity is analyzed. Finally, a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the element importance measure.
As commercial drone delivery becomes increasingly popular, the extension of the vehicle routing problem with drones (VRPD) is emerging as an optimization problem of interests. This paper studies a variant of VRPD in multi-trip and multi-drop (VRP-mmD). The problem aims at making schedules for the trucks and drones such that the total travel time is minimized. This paper formulate the problem with a mixed integer programming model and propose a two-phase algorithm, i.e., a parallel route construction heuristic (PRCH) for the first phase and an adaptive neighbor searching heuristic (ANSH) for the second phase. The PRCH generates an initial solution by concurrently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase. Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase. Numerical tests on some benchmark data are conducted to verify the performance of the algorithm. The results show that the proposed algorithm can found better solutions than some state-of-the-art methods for all instances. Moreover, an extensive analysis highlights the stability of the proposed algorithm.
Resource management must attach importance to effective resource deployment. Aiming at the research of resource deployment system, firstly, as an important factor of resource deployment system, corporate technological innovation social responsibility (CISR) is analyzed. Based on this, this paper constructs a system dynamics model to analyze the changes in resource deployment system affected by CISR. The simulation model is developed using Venism personal learning edition (PLE). The results show that CISR, acted as a new factor affecting the resource deployment system, has a positive effect on resource deployment system performance. Moreover, when CISR exceeds the threshold value, the resource deployment system performance increases significantly faster, reflecting that the resource deployment system becomes more efficient. The results show that the method proposed in this paper is feasible and efficient. This research provides theoretical and practical implications for resource deployment system research.
The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost. Based on the flight test activity, mathematical models of flight test duration and cost are established to set up the framework of flight test process. The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test. In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement, real flight test data is used to make an example calculation. Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data, which can shorten the duration, reduce the cost, and improve the efficiency of flight test.
Tracking and analyzing data from research projects is critical for understanding research trends and supporting the development of science and technology strategies. However, the data from these projects is often complex and inadequate, making it challenging for researchers to conduct in-depth data mining to improve policies or management. To address this problem, this paper adopts a top-down approach to construct a knowledge graph (KG) for research projects. Firstly, we construct an integrated ontology by referring to the metamodel of various architectures, which is called the meta-model integration conceptual reference model. Subsequently, we use the dependency parsing method to extract knowledge from unstructured textual data and use the entity alignment method based on weakly supervised learning to classify the extracted entities, completing the construction of the KG for the research projects. In addition, a knowledge inference model based on representation learning is employed to achieve knowledge completion and improve the KG. Finally, experiments are conducted on the KG for research projects and the results demonstrate the effectiveness of the proposed method in enriching incomplete data within the KG.
Compared with single-domain unmanned swarms, cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints. In this paper, a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning. Firstly, the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources. Secondly, an algorithmic framework for joint target assignment and mission trajectory planning is proposed, in which the initial planning of the trajectory is performed in the target assignment phase, while the trajectory is further optimised afterwards. Next, the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function. Finally, the algorithm is numerically simulated by specific cases. Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms. Furthermore, the solution performance of the hybrid estimation of distribution algorithm (EDA)-genetic algorithm (GA) algorithm is better than that of GA and EDA.
Multi-agent systems often require good interoperability in the process of completing their assigned tasks. This paper first models the static structure and dynamic behavior of multi-agent systems based on layered weighted scale-free community network and susceptible-infected-recovered (SIR) model. To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors, a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems. A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm. A method for evaluating system interoperability is designed based on simulation experiments, providing reference for the construction planning and optimization of organizational application of the system. Finally, the feasibility of the method is verified through case studies.
The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms (GA). The score-based algorithms are prone to searching space explosion. Classical GA is slow to converge, and prone to falling into local optima. To address these issues, an improved GA with domain knowledge (IGADK) is proposed. Firstly, domain knowledge is incorporated into the learning process of causality to construct a new fitness function. Secondly, a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate. Finally, an experiment is conducted on simulation data, which compares the classical GA with IGADK with domain knowledge of varying accuracy. The IGADK can greatly reduce the number of iterations, populations, and samples required for learning, which illustrates the efficiency and effectiveness of the proposed algorithm.
International freedom of the air (traffic rights) is a key resource for airlines to carry out international air transport business. An efficient and reasonable traffic right resource allocation within a country between airlines can affect the quality of a country’s participation in international air transport. In this paper, a multi-objective mixed-integer programming model for traffic rights resource allocation is developed to minimize passenger travel mileages and maximize the number of traffic rights resources allocated to hub airports and competitive carriers. A hybrid heuristic algorithm combining the genetic algorithm and the variable neighborhood search is devised to solve the model. The results show that the optimal allocation scheme aligns with the principle of fairness, indicating that the proposed model can play a certain guiding role in and provide an innovative perspective on traffic rights resource allocation in various countries.
Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure, thus gaining an advantage in a war. However, the existing cascading failure modeling analysis of interdependent networks is insufficient for describing the load characteristics and dependencies of subnetworks, and it is difficult to use for modeling and failure analysis of power-combat (P-C) coupling networks. This paper considers the physical characteristics of the two subnetworks and studies the mechanism of fault propagation between subnetworks and across systems. Then the survivability of the coupled network is evaluated. Firstly, an integrated modeling approach for the combat system and power system is predicted based on interdependent network theory. A heterogeneous one-way interdependent network model based on probability dependence is constructed. Secondly, using the operation loop theory, a load-capacity model based on combat-loop betweenness is proposed, and the cascade failure model of the P-C coupling system is investigated from three perspectives: initial capacity, allocation strategy, and failure mechanism. Thirdly, survivability indexes based on load loss rate and network survival rate are proposed. Finally, the P-C coupling system is constructed based on the IEEE 118-bus system to demonstrate the proposed method.
The belief rule-based (BRB) system has been popular in complexity system modeling due to its good interpretability. However, the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability. The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by integrating accuracy and interpretability into an optimization objective. But the integration has a greater impact on optimization results with strong subjectivity. Thus, a multi-objective optimization framework in the modeling of BRB systems with interpretability-accuracy trade-off is proposed in this paper. Firstly, complexity and accuracy are taken as two independent optimization goals, and uniformity as a constraint to give the mathematical description. Secondly, a classical multi-objective optimization algorithm, nondominated sorting genetic algorithm II (NSGA-II), is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity. Finally, a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization. The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization, and has capability of joint optimizing the structure and parameters of BRB systems with interpretability-accuracy trade-off.