This paper considers an intelligent reflecting surface (IRS)-assisted multiple-input multiple-output (MIMO) system. To maximize the average achievable rate (AAR) under outdated channel state information (CSI), we propose a twin-timescale passive beamforming (PBF) and power allocation protocol which can reduce the IRS configuration and training overhead. Specifically, the short-timescale power allocation is designed with the outdated precoder and fixed PBF. A new particle swarm optimization (PSO)-based long-timescale PBF optimization is proposed, where mini-batch channel samples are utilized to update the fitness function. Finally, simulation results demonstrate the effectiveness of the proposed method.
Implementing an efficient real-time prognostics and health management (PHM) framework improves safety and reduces maintenance costs in complex engineering systems. However, research on PHM framework development for radar systems is limited. Furthermore, typical PHM approaches are centralized, do not scale well, and are challenging to implement. This paper proposes an integrated PHM framework for radar systems based on system structural decomposition to enhance reliability and support maintenance actions. The complexity challenge associated with implementing PHM at the system level is addressed by dividing the radar system into subsystems. Subsequently, optimal measurement point selection and sensor placement algorithms are formulated for effective data acquisition. Local modules are developed for each subsystem health assessment, fault diagnosis, and fault prediction without a centralized controller. Maintenance decisions are based on each local module’s fault diagnosis and prediction results. To further improve the effectiveness of the prognostics stage, the feasibility of integrating deep learning (DL) models is also investigated. Several experiments with different degradation patterns are performed to evaluate the effectiveness of the framework’s DL-based prognostics model. The proposed framework facilitates transitioning from traditional reactive maintenance practices to a predictive maintenance approach, thereby reducing downtime and improving the overall availability of radar systems.
Architecture framework has become an effective method recently to describe the system of systems (SoS) architecture, such as the United States (US) Department of Defense Architecture Framework Version 2.0 (DoDAF2.0). As a viewpoint in DoDAF2.0, the operational viewpoint (OV) describes operational activities, nodes, and resource flows. The OV models are important for SoS architecture development. However, as the SoS complexity increases, constructing OV models with traditional methods exposes shortcomings, such as inefficient data collection and low modeling standards. Therefore, we propose an intelligent modeling method for five OV models, including operational resource flow OV-2, organizational relationships OV-4, operational activity hierarchy OV-5a, operational activities model OV-5b, and operational activity sequences OV-6c. The main idea of the method is to extract OV architecture data from text and generate interoperable OV models. First, we construct the OV meta model based on the DoDAF2.0 meta model (DM2). Second, OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field (BiLSTM-CRF) model. And OV architecture relationships are collected with relationship extraction rules. Finally, we define the generation rules for OV models and develop an OV modeling tool. We use unmanned surface vehicles (USV) swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method.
Blockchain technology has attracted worldwide attention, and has strong application potential in complex product system supply chain and other fields. This paper focuses on the supply chain management issues of complex product systems, and combines the technical characteristics of blockchain, such as tamper resistance and strong resistance to destruction, to conduct research on the application of blockchain based supply chain management for complex product systems. The blockchain technology is integrated into functional modules such as business interaction, privacy protection, data storage, and system services. The application technology architecture of complex product system supply chain integrated with blockchain is constructed. The application practice in complex product system supply chain is carried out. The results show that the supply chain of complex product systems has the functions of traceability, cost reduction, and anti-counterfeiting protection. Finally, the future development direction and research focus of the complex product system supply chain based on blockchain are prospected, which provides a reference for the equipment manufacturing supply chain management in the military industry.
The laser-guided bomb (LGB) is an air-to-ground precision-guided weapon that offers high hit rates, great power, and ease of use. LGBs are guided by semi-active laser ground-seeking technology, which means that atmospheric conditions can affect their accuracy. The spatial release region (SRR) of LGBs is difficult to calculate precisely, especially when there is a poor field of view. This can result in a lower real hit probability. To increase the hit probability of LGBs in tough atmospheric situations, a novel method for calculating the SRR has been proposed. This method is based on the transmittance model of the 1.06 μm laser in atmospheric species and the laser diffuse reflection model of the target surface to determine the capture target time of the laser seeker. Then, it calculates the boundary ballistic space starting position by ballistic model and gets the spatial scope of the spatial release region. This method can determine the release region of LGBs based on flight test data such as instantaneous velocity, altitude, off-axis angle, and atmospheric visibility. By more effectively employing aircraft release conditions, atmospheric visibility and other factors, the SRR calculation method can improve LGB hit probability by 9.2%.
Future unmanned battles desperately require intelligent combat policies, and multi-agent reinforcement learning offers a promising solution. However, due to the complexity of combat operations and large size of the combat group, this task suffers from credit assignment problem more than other reinforcement learning tasks. This study uses reward shaping to relieve the credit assignment problem and improve policy training for the new generation of large-scale unmanned combat operations. We first prove that multiple reward shaping functions would not change the Nash Equilibrium in stochastic games, providing theoretical support for their use. According to the characteristics of combat operations, we propose tactical reward shaping (TRS) that comprises maneuver shaping advice and threat assessment-based attack shaping advice. Then, we investigate the effects of different types and combinations of shaping advice on combat policies through experiments. The results show that TRS improves both the efficiency and attack accuracy of combat policies, with the combination of maneuver reward shaping advice and ally-focused attack shaping advice achieving the best performance compared with that of the baseline strategy.
The belief rule-based (BRB) system has been popular in complexity system modeling due to its good interpretability. However, the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability. The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by integrating accuracy and interpretability into an optimization objective. But the integration has a greater impact on optimization results with strong subjectivity. Thus, a multi-objective optimization framework in the modeling of BRB systems with interpretability-accuracy trade-off is proposed in this paper. Firstly, complexity and accuracy are taken as two independent optimization goals, and uniformity as a constraint to give the mathematical description. Secondly, a classical multi-objective optimization algorithm, nondominated sorting genetic algorithm II (NSGA-II), is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity. Finally, a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization. The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization, and has capability of joint optimizing the structure and parameters of BRB systems with interpretability-accuracy trade-off.
In this paper, a bandwidth-adjustable extended state observer (ABESO) is proposed for the systems with measurement noise. It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise, which conflicts with observation accuracy. Therefore, we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system. The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error. When the tracking error decreases, the bandwidth decreases to suppress the noise, otherwise the bandwidth does not change. It is proven that the error dynamics are bounded and converge in finite time. The relationship between the upper bound of the estimation error and the scaling factor is given. When the scaling factor is less than 1, the ABESO has higher estimation accuracy than the linear extended state observer (LESO). Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments. The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.
For time-of-flight (TOF) light detection and ranging (LiDAR), a three-channel high-performance transimpedance amplifier (TIA) with high immunity to input load capacitance is presented. A regulated cascade (RGC) as the input stage is at the core of the complementary metal oxide semiconductor (CMOS) circuit chip, giving it more immunity to input photodiode detectors. A simple smart output interface acting as a feedback structure, which is rarely found in other designs, reduces the chip size and power consumption simultaneously. The circuit is designed using a 0.5 μm CMOS process technology to achieve low cost. The device delivers a 33.87 dB? transimpedance gain at 350 MHz. With a higher input load capacitance, it shows a ?3 dB bandwidth of 461 MHz, indicating a better detector tolerance at the front end of the system. Under a 3.3 V supply voltage, the device consumes 5.2 mW, and the total chip area with three channels is 402.8×597.0 μm2 (including the test pads).
This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external disturbances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising during measurements, thereby enhancing the robustness and stability of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference signals utilizing local information and communication with neighbors. Subsequently, a fixed-time sliding mode controller is introduced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve distributed average tracking of reference signals, and rigorous analytical methods are employed to substantiate the fixed-time stability. Finally, numerical simulation results are provided to validate the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.
This paper addresses the time-varying formation-containment (FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.
Enhancing the stability and performance of practical control systems in the presence of nonlinearity, time delay, and uncertainty remains a significant challenge. Particularly, a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions. In this paper, we propose an observer-based adaptive tracking controller to address this gap. Neural networks are utilized to handle uncertainty, and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions. Subsequently, a new auxiliary signal counters the impact of time-varying input delay, while a Nussbaum function is introduced to solve the problem of unknown control directions. The leverage of an advanced dynamic surface control technique avoids the “complexity explosion” and reduces boundary layer errors. Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded (SGUUB), and the tracking error converges to a small region around the origin by selecting suitable parameters. Simulation examples are provided to demonstrate the feasibility of the proposed approach.
Separation and recognition of radar signals is the key function of modern radar reconnaissance, which is of great significance for electronic countermeasures and anti-countermeasures. In order to improve the ability of separating mixed signals in complex electromagnetic environment, a blind source separation algorithm based on degree of cyclostationarity (DCS) criterion is constructed in this paper. Firstly, the DCS criterion is constructed by using the cyclic spectrum theory. Then the algorithm flow of blind source separation is designed based on DCS criterion. At the same time, Givens matrix is constructed to make the blind source separation algorithm suitable for multiple signals with different cyclostationary frequencies. The feasibility of this method is further proved. The theoretical and simulation results show that the algorithm can effectively separate and recognize common multi-radar signals.
Discrete event system (DES) models promote system engineering, including system design, verification, and assessment. The advancement in manufacturing technology has endowed us to fabricate complex industrial systems. Consequently, the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative. Moreover, industrial systems are no longer quiescent, thus the intelligent operations of the systems should be dynamically specified in the model. In this paper, the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model, and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model. In traditional modeling approaches, the change or addition of specifications always necessitates the complete resubmission of the system model, a resource-consuming and error-prone process. Compared with traditional approaches, our approach has three remarkable advantages: (i) an established Boolean semantic can be fitful for all kinds of systems; (ii) there is no need to resubmit the system model whenever there is a change or addition of the operations; (iii) multiple specifying tasks can be easily achieved by continuously adding a new semantic. Thus, this general modeling approach has wide potential for future complex and intelligent industrial systems.
At present, although knowledge graphs have been widely used in various fields such as recommendation systems, question and answer systems, and intelligent search, there are always quality problems such as knowledge omissions and errors. Quality assessment and control, as an important means to ensure the quality of knowledge, can make the applications based on knowledge graphs more complete and more accurate by reasonably assessing the knowledge graphs and fixing and improving the quality problems at the same time. Therefore, as an indispensable part of the knowledge graph construction process, the results of quality assessment and control determine the usefulness of the knowledge graph. Among them, the assessment and enhancement of completeness, as an important part of the assessment and control phase, determine whether the knowledge graph can fully reflect objective phenomena and reveal potential connections among entities. In this paper, we review specific techniques of completeness assessment and classify completeness assessment techniques in terms of closed world assumptions, open world assumptions, and partial completeness assumptions. The purpose of this paper is to further promote the development of knowledge graph quality control and to lay the foundation for subsequent research on the completeness assessment of knowledge graphs by reviewing and classifying completeness assessment techniques.
During high-speed flight, both thermal and mechanical loads can degrade the electrical performance of the antenna-radome system, which can subsequently affect the performance of the guidance system. This paper presents a method for evaluating the electrical performance of the radome when subjected to thermo-mechanical-electrical (TME) coupling. The method involves establishing a TME coupling model (TME-CM) based on the TME sharing mesh model (TME-SMM) generated by the tetrahedral mesh partitioning of the radome structure. The effects of dielectric temperature drift and structural deformation on the radome’s electrical performance are also considered. Firstly, the temperature field of the radome is obtained by transient thermal analysis while the deformation field of the radome is obtained by static analysis. Subsequently, the dielectric variation and structural deformation of the radome are accurately incorporated into the electrical simulation model based on the TME-SMM. The three-dimensional (3D) ray tracing method with the aperture integration technique is used to calculate the radome’s electrical performance. A representative example is provided to illustrate the superiority and necessity of the proposed method. This is achieved by calculating and analyzing the changes in the radome’s electrical performance over time during high-speed flight.
Aiming at the characteristics of multi-stage and (extremely) small samples of the identification problem of key effectiveness indexes of weapon equipment system-of-systems (WESoS), a Bayesian intelligent identification and inference model for system effectiveness assessment indexes based on dynamic grey incidence is proposed. The method uses multilayer Bayesian techniques, makes full use of historical statistics and empirical information, and determines the Bayesian estimation of the incidence degree of indexes, which effectively solves the difficulties of small sample size of effectiveness indexes and difficulty in obtaining incidence rules between indexes. Secondly, The method quantifies the incidence relationship between evaluation indexes and combat effectiveness based on Bayesian posterior grey incidence, and then identifies key system effectiveness evaluation indexes. Finally, the proposed method is applied to a case of screening key effectiveness indexes of a missile defensive system, and the analysis results show that the proposed method can fuse multi-moment information and extract multi-stage key indexes, and has good data extraction capability in the case of small samples.
Cascading failures in infrastructure networks have serious impacts on network function. The limited capacity of network nodes provides a necessary condition for cascade failure. However, the network capacity cannot be infinite in the real network system. Therefore, how to reasonably allocate the limited capacity resources is of great significance. In this article, we put forward a capacity allocation strategy based on community structure against cascading failure. Experimental results indicate that the proposed method can reduce the scale of cascade failures with higher capacity utilization compared with Motter-Lai (ML) model. The advantage of our method is more obvious in scale-free network. Furthermore, the experiment shows that the cascade effect is more obvious when the vertex load is randomly varying. It is known to all that the growth of network capacity can make the network more resistant to destruction, but in this paper it is found that the contribution rate of unit capacity rises first and then decreases with the growth of network capacity cost.
A framework that integrates planning, monitoring and replanning techniques is proposed. It can devise the best solution based on the current state according to specific objectives and properly deal with the influence of abnormity on the plan execution. The framework consists of three parts: the hierarchical task network (HTN) planner based on Monte Carlo tree search (MCTS), hybrid plan monitoring based on forward and backward and norm-based replanning method selection. The HTN planner based on MCTS selects the optimal method for HTN compound task through pre-exploration. Based on specific objectives, it can identify the best solution to the current problem. The hybrid plan monitoring has the capability to detect the influence of abnormity on the effect of an executed action and the premise of an unexecuted action, thus trigger the replanning. The norm-based replanning selection method can measure the difference between the expected state and the actual state, and then select the best replanning algorithm. The experimental results reveal that our method can effectively deal with the influence of abnormity on the implementation of the plan and achieve the target task in an optimal way.
The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and performance stability across diverse environments, stringent requirements are placed on the dynamic range of its receiving system. This paper provides a detailed exposition of a field-programmable gate array (FPGA)-based automatic gain control (AGC) design for the spaceborne scatterometer. Implemented on an FPGA, the algorithm harnesses its parallel processing capabilities and high-speed performance to monitor the received echo signals in real time. Employing an adaptive AGC algorithm, the system generates gain control codes applicable to the intermediate frequency variable attenuator, enabling rapid and stable adjustment of signal amplitudes from the intermediate frequency amplifier to an optimal range. By adopting a purely digital processing approach, experimental results demonstrate that the AGC algorithm exhibits several advantages, including fast convergence, strong flexibility, high precision, and outstanding stability. This innovative design lays a solid foundation for the high-precision measurements of the Ocean 4A scatterometer, with potential implications for the future of spaceborne microwave scatterometers.
As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temperature sensitivity of optical devices, the influence of environmental temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learning based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors generated in the fiber ring due to the Shupe effect. This work proposes a composite model based on k-means clustering, support vector regression, and particle swarm optimization algorithms. And it significantly reduced redundancy within the samples by adopting the interval sequence sample. Moreover, metrics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effectiveness. This work effectively enhances the consistency between data and models across different temperature ranges and temperature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utilizing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guidance and technical references for sensors error compensation work in other fields.
Beyond-visual-range (BVR) air combat threat assessment has attracted wide attention as the support of situation awareness and autonomous decision-making. However, the traditional threat assessment method is flawed in its failure to consider the intention and event of the target, resulting in inaccurate assessment results. In view of this, an integrated threat assessment method is proposed to address the existing problems, such as overly subjective determination of index weight and imbalance of situation. The process and characteristics of BVR air combat are analyzed to establish a threat assessment model in terms of target intention, event, situation, and capability. On this basis, a distributed weight-solving algorithm is proposed to determine index and attribute weight respectively. Then, variable weight and game theory are introduced to effectively deal with the situation imbalance and achieve the combination of subjective and objective. The performance of the model and algorithm is evaluated through multiple simulation experiments. The assessment results demonstrate the accuracy of the proposed method in BVR air combat, indicating its potential practical significance in real air combat scenarios.
Nowadays manufacturers are facing fierce challenge. Apart from the products, providing customers with multiple maintenance options in the service contract becomes more popular, since it can help to improve customer satisfaction, and ultimately promote sales and maximize profit for the manufacturer. By considering the combinations of corrective maintenance and preventive maintenance, totally three types of maintenance service contracts are designed. Moreover, attractive incentive and penalty mechanisms are adopted in the contracts. On this basis, Nash non-cooperative game is applied to analyze the revenue for both the manufacturer and customers, and so as to optimize the pricing mechanism of maintenance service contract and achieve a win-win situation. Numerical experiments are conducted. The results show that by taking into account the incentive and penalty mechanisms, the revenue can be improved for both the customers and manufacturer. Moreover, with the increase of repair rate and improvement factor in the preventive maintenance, the revenue will increase gradually for both the parties.
The rapid evolution of unmanned aerial vehicle (UAV) technology and autonomous capabilities has positioned UAV as promising last-mile delivery means. Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode. Spatiotemporal collaboration, along with energy consumption with payload and wind conditions play important roles in delivery route planning. This paper introduces the traveling salesman problem with time window and onboard UAV (TSP-TWOUAV) and emphasizes the consideration of real-world scenarios, focusing on time collaboration and energy consumption with wind and payload. To address this, a mixed integer linear programming (MILP) model is formulated to minimize the energy consumption costs of vehicle and UAV. Furthermore, an adaptive large neighborhood search (ALNS) algorithm is applied to identify high-quality solutions efficiently. The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.
To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper proposed multi-operator real-time constraints particle swarm optimization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and integrates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evolution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection optimization of paths, gradually reducing algorithmic space, accelerating convergence, and enhances path cooperativity. Simulation experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demonstrate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. Moreover it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collaborative path planning. The experiments are conducted in three collaborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality.
The parametric scattering center model of radar target has the advantages of simplicity, sparsity and mechanism relevant, making it widely applied in fields such as radar data compression and rapid generation, radar imaging, feature extraction and recognition. This paper summarizes and analyzes the research situation, development trend, and difficult problems on scattering center (SC) parametric modeling from three aspects: parametric representation, determination method of model parameters, and application.
With the continuous development of network functions virtualization (NFV) and software-defined networking (SDN) technologies and the explosive growth of network traffic, the requirement for computing resources in the network has risen sharply. Due to the high cost of edge computing resources, coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge. In this paper, we focus on optimizing the placement of network services in cloud-edge environments to maximize the efficiency. It is first proved that, in cloud-edge environments, placing one service function chain (SFC) integrally in the cloud or at the edge can improve the utilization efficiency of edge resources. Then a virtual network function (VNF) performance-resource (P-R) function is proposed to represent the relationship between the VNF instance computing performance and the allocated computing resource. To select the SFCs that are most suitable to deploy at the edge, a VNF placement and resource allocation model is built to configure each VNF with its particular P-R function. Moreover, a heuristic recursive algorithm is designed called the recursive algorithm for max edge throughput (RMET) to solve the model. Through simulations on two scenarios, it is verified that RMET can improve the utilization efficiency of edge computing resources.
Accurate target angle estimation is one of the challenges for wideband radars due to the fact that target occupies multiple range bins, resulting in lower energy or signal to noise ratio in a single range bin. This paper proposes a processing technique for enhanced accuracy of target angle estimates for wideband monopulse radars. Firstly, to accumulate the energy of the received echo signals from different scatterers on a target, the phase difference between different scatterers on a target is estimated using the minimum entropy phase estimation method combining with the correlation between adjacent pulses. Then, the monopulse ratio is obtained by using the signals from the accumulated sum and difference channels. The target angle is estimated by weighting the accumulated echo energy for accuracy enhancement. Experimental results based on both numerical simulation and measured data are presented to validate the effectiveness of the proposed technique.
Vibration-induced bias deviation, which is generated by intensity fluctuations and additional phase differences, is one of the vital errors for fiber optic gyroscopes (FOGs) operating in vibration environment and has severely restricted the applications of high-precision FOGs. The conventional methods for suppressing vibration-induced errors mostly concentrate on reinforcing the mechanical structure and optical path as well as the compensation under some specific operation parameters, which have very limited effects for high-precision FOGs maintaining performances under vibration. In this work, a technique of suppressing the vibration-induced bias deviation through removing the part related to the varying gain from the rotation-rate output is put forward. Particularly, the loop gain is extracted out by adding a gain-monitoring wave. By demodulating the loop gain and the rotation rate simultaneously under distinct frequencies and investigating their quantitative relationship, the vibration-induced bias error is compensated without limiting the operating parameters or environments, like the applied modulation depth. The experimental results show that the proposed method has achieved the reduction of bias error from about 0.149°/h to 0.014°/h during the random vibration with frequencies from 20 Hz to 2000 Hz. This technique provides a feasible route for enhancing the performances of high-precision FOGs heading towards high environmental adaptability.
For air-to-air missiles, the terminal guidance’s precision is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneuvering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast convergence. The system’s state is more swiftly converged to the sliding mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detector for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.
In the existing impact time control guidance (ITCG) laws for moving-targets, the effects of time-varying velocity caused by aerodynamics and gravity cannot be effectively considered. Therefore, an ITCG with field-of-view (FOV) constraints based on biased proportional navigation guidance (PNG) is developed in this paper. The remaining flight time (time-to-go) estimation method is derived considering aerodynamic force and gravity. The number of differential equations is reduced and the integration step is increased by changing the integral variable, which makes it possible to obtain time-to-go through integration. An impact time controller with FOV constraints is proposed by analyzing the influence of the biased term on time-to-go and FOV constraint. Then, numerical simulations are performed to verify the correctness and superiority of the method.
With the rapid development of low-altitude economy and unmanned aerial vehicles (UAVs) deployment technology, aerial-ground collaborative delivery (AGCD) is emerging as a novel mode of last-mile delivery, where the vehicle and its onboard UAVs are utilized efficiently. Vehicles not only provide delivery services to customers but also function as mobile warehouses and launch/recovery platforms for UAVs. This paper addresses the vehicle routing problem with UAVs considering time window and UAV multi-delivery (VRPU-TW&MD). A mixed integer linear programming (MILP) model is developed to minimize delivery costs while incorporating constraints related to UAV energy consumption. Subsequently, a micro-evolution augmented large neighborhood search (MEALNS) algorithm incorporating adaptive large neighborhood search (ALNS) and micro-evolution mechanism is proposed. Numerical experiments demonstrate the effectiveness of both the model and algorithm in solving the VRPU-TW&MD. The impact of key parameters on delivery performance is explored by sensitivity analysis.
Ground penetrating radar (GPR), as a fast, efficient, and non-destructive detection device, holds great potential for the detection of shallow subsurface environments, such as urban road subsurface monitoring. However, the interpretation of GPR echo images often relies on manual recognition by experienced engineers. In order to address the automatic interpretation of cavity targets in GPR echo images, a recognition-algorithm based on Gaussian mixed model-hidden Markov model (GMM-HMM) is proposed, which can recognize three dimensional (3D) underground voids automatically. First, energy detection on the echo images is performed, whereby the data is pre-processed and pre-filtered. Then, edge histogram descriptor (EHD), histogram of oriented gradient (HOG), and Log-Gabor filters are used to extract features from the images. The traditional method can only be applied to 2D images and pre-processing is required for C-scan images. Finally, the aggregated features are fed into the GMM-HMM for classification and compared with two other methods, long short-term memory (LSTM) and gate recurrent unit (GRU). By testing on a simulated dataset, an accuracy rate of 90% is obtained, demonstrating the effectiveness and efficiency of our proposed method.
Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks (MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-to-end delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a low-Earth-orbit satellite communication network (LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.
To better complete various missions, it is necessary to plan an optimal trajectory or provide the optimal control law for the multirole missile according to the actual situation, including launch conditions and target location. Since trajectory optimization struggles to meet real-time requirements, the emergence of data-based generation methods has become a significant focus in contemporary research. However, due to the large differences in the characteristics of the optimal control laws caused by the diversity of tasks, it is difficult to achieve good prediction results by modeling all data with one single model. Therefore, the modeling idea of the mixture of experts (MoE) is adopted. Firstly, the K-means clustering algorithm is used to partition the sample data set, and the corresponding neural network classification model is established as the gate switch of MoE. Then, the expert models, i.e., the mappings from the generation conditions to the optimal control law represented by the results of principal component analysis (PCA), are represented by Kriging models. Finally, multiple rounds of accuracy evaluation, sample supplementation, and model updating are conducted to improve the generation accuracy. The Monte Carlo simulation shows that the accuracy of the proposed model reaches 96% and the generation efficiency meets the real-time requirement.
Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be solved. A comprehensive evaluation method is proposed, which combines grey relational analysis (GRA) and cloud model, to evaluate the anti-jamming performances of Link-16. Firstly, on the basis of establishing the anti-jamming performance evaluation indicator system of Link-16, the linear combination of analytic hierarchy process (AHP) and entropy weight method (EWM) are used to calculate the combined weight. Secondly, the qualitative and quantitative concept transformation model, i.e., the cloud model, is introduced to evaluate the anti-jamming abilities of Link-16 under each jamming scheme. In addition, GRA calculates the correlation degree between evaluation indicators and the anti-jamming performance of Link-16, and assesses the best anti-jamming technology. Finally, simulation results prove that the proposed evaluation model can achieve the objective of feasible and practical evaluation, which opens up a novel way for the research of anti-jamming performance evaluations of Link-16.
When the maneuverability of a pursuer is not significantly higher than that of an evader, it will be difficult to intercept the evader with only one pursuer. Therefore, this article adopts a two-to-one differential game strategy, the game of kind is generally considered to be angle-optimized, which allows unlimited turns, but these practices do not take into account the effect of acceleration, which does not correspond to the actual situation, thus, based on the angle-optimized, the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration. A two-to-one differential game problem is proposed in the three-dimensional space, and an improved multi-objective grey wolf optimization (IMOGWO) algorithm is proposed to solve the optimal game point of this problem. With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space, a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game. Then the optimal game point is solved by using the IMOGWO algorithm. It is proved based on Markov chains that with the IMOGWO, the Pareto solution set is the solution of the differential game. Finally, it is verified through simulations that the pursuers can capture the escapee, and via comparative experiments, it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage.